Section 2.5 Solving Linear Equations in One Variable
Using the Multiplication-Division Principle

1. If I multiply a number by 4 and the result is 20, what number did I start with?
 (a) 5
 (b) 16
 (c) 24
 (d) 80

2. If I divide a number by 3 and the result is 7, what number did I start with?
 (a) 7/3
 (b) 4
 (c) 11
 (d) 21

3. Solve for \(x \): \(2x = 18 \)
 (a) \(x = 9 \)
 (b) \(x = 16 \)
 (c) \(x = 20 \)
 (d) \(x = 36 \)

4. Solve for \(x \): \(5x = -10 \)
 (a) \(x = 2 \)
 (b) \(x = -2 \)
 (c) \(x = 50 \)
 (d) \(x = -50 \)
5. True or False: \(\frac{x}{6} \) means the same thing as \(x \div 8 \).

 (a) True, and I am very confident

 (b) True, but I am not very confident

 (c) False, but I am not very confident

 (d) False, and I am very confident

6. Solve for \(x \): \(\frac{x}{6} = 5 \)

 (a) \(x = -1 \)

 (b) \(x = \frac{5}{6} \)

 (c) \(x = 11 \)

 (d) \(x = 30 \)

7. Solve for \(x \): \(-\frac{x}{3} = 6 \)

 (a) \(x = -2 \)

 (b) \(x = 2 \)

 (c) \(x = -18 \)

 (d) \(x = 18 \)

8. True or False: The solutions to \(4x = 28 \) are the same as the solutions to \(\frac{4x}{4} = \frac{28}{4} \).

 (a) True, and I am very confident

 (b) True, but I am not very confident

 (c) False, but I am not very confident

 (d) False, and I am very confident

9. On Wednesday Frank ate twice as many grapes as he ate on Monday. If he ate 28 grapes on Wednesday, how many did he eat on Monday? Set up and solve an equation.

 (a) 14 grapes

 (b) 26 grapes

 (c) 28 grapes

 (d) 56 grapes