Section 3.1 Slope of a Line and Applications of Slope

1. What is the slope of the line shown in the graph below?

 ![Graph of a line](image)

 (a) 3
 (b) −3
 (c) \(\frac{1}{3} \)
 (d) \(-\frac{1}{3} \)
 (e) This line has no slope.

2. What is the slope of the line that passes through the points (0, 2) and \((-2, -4)\)?

 (a) 1
 (b) −1
 (c) \(\frac{1}{3} \)
 (d) 3
 (e) Undefined

3. What is the slope of this line?

 (a) \(\frac{1}{2} \)
 (b) 2
4. Calculate the slope of the line through the points $(4, -3)$ and $(1, 3)$.
 (a) 2
 (b) -2
 (c) $\frac{1}{2}$
 (d) $-\frac{1}{2}$

5. Calculate the slope of the line through the points $(6, -8)$ and $(6, 2)$.
 (a) 10
 (b) $\frac{1}{10}$
 (c) 0
 (d) undefined

6. True or False: All vertical lines have slope 0.
 (a) True, and I am very confident
 (b) True, but I am not very confident
 (c) False, but I am not very confident
 (d) False, and I am very confident
7. What does this line look like $2x + 1 = 7$?

(a) horizontal

(b) vertical

(c) up and to the right

(d) down and to the right

8. Which of the following functions represents a linear function with slope 3 and y-intercept -4?

(a) $y = -4x + 3$
(b) $y = 3x - 4$
(c) $y - 2 = 3(x - 2)$
(d) Both (a) and (b)
(e) Both (b) and (c)

9. Which equation describes the linear function that has slope 3 and x-intercept 4?

(a) $y = 3x + 4$
(b) $y = 4x + 3$
(c) $y = 3x - 12$
(d) $y = 3x + 12$

10. The relationship between the latitude L of a city in the Northern Hemisphere and its average annual temperature T is modeled by the function $T = -0.68L + 89.5$. The slope of this linear function means

(a) That temperature at the equator would be 89.5°.
(b) For every degree increase in latitude the average annual temperature increases by 89.5°.
(c) For every degree increase in latitude the average annual temperature increases by 0.68°.
(d) For every degree increase in latitude the average annual temperature decreases by 0.68°.
11. The relationship between the latitude L of a city in the Northern Hemisphere and its average annual temperature T is modeled by the function $T = -0.68L + 89.5$. The vertical intercept of this linear function means

(a) That temperature at the equator would be 89.5°.
(b) For every degree increase in latitude the average annual temperature increases by 89.5°.
(c) That temperature at the equator would be $-0.68°$.
(d) For every degree increase in latitude the average annual temperature decreases by $0.68°$.

12. Which equation describes a line that is parallel to the graph of $y = -2x + 4$?

(a) $y = \frac{1}{2}x - 3$
(b) $y = 2x - 3$
(c) $y = \frac{1}{2}x + 4$
(d) $y = -\frac{1}{2}x - 3$
(e) $y = -2x - 3$

13. Are the given lines parallel, perpendicular, or neither?

Line 1: $2x + 4y = 12$
Line 2: $2x - x = 4$

(a) parallel
(b) perpendicular
(c) neither

14. Which equation describes a line that is perpendicular to the graph of $y = -2x + 4$?

(a) $y = -\frac{1}{2}x - 3$
(b) $y = 2x - 3$
(c) $y = -\frac{1}{2}x + 4$
(d) $y = \frac{1}{2}x - 3$
(e) $y = -2x - 3$

15. Find the equation of the line that passes through the point $(1, 4)$ and is perpendicular to the line given by $3x - 2y = 6$.

4
(a) $y = \frac{3}{2}x + \frac{5}{2}$

(b) $y = \frac{3}{2}x - \frac{11}{2}$

(c) $y = -\frac{2}{3}x + \frac{14}{3}$

(d) $y = -\frac{2}{3}x - \frac{10}{3}$