MathQuest: Difference Equations

Testing Analytical Solutions

- 1. We want to test the solution $a_n = 5 \cdot 4^n$ in the difference equation $a_{n+1} = 4a_n$. What equation results from substituting the solution into the difference equation?
 - (a) $5 \cdot 4^n = 4 \cdot 5 \cdot 4^n$
 - (b) $5 \cdot 4^{n+1} = 4 \cdot 5 \cdot 4^n$
 - (c) $5 \cdot 4^n (n+1) = 4 \cdot 5 \cdot 4^n \cdot n$
 - (d) $20^{n+1} = 4 \cdot 20^n$
 - (e) None of the above
- 2. We want to test the solution $a_n = 6n + C$ in the difference equation $a_{n+1} = a_n + 6$. What equation results from substituting the solution into the difference equation?
 - (a) 6n + 1 + C = 6n + C + 6
 - (b) 6(n+1) + C = 6n + C + 6
 - (c) 6(n+1) + C(n+1) = 6n + Cn + 6
 - (d) $a_n + 6 = 6(a_n + 6) + C$
 - (e) None of the above
- 3. After substituting a proposed solution into the difference equation, we arrive at

$$2^{n+1} \cdot 8 - 5 = 2(2^n \cdot 8 - 5) + 5.$$

Do we have a solution to the difference equation?

- (a) Yes
- (b) No
- 4. After substituting a proposed solution into the difference equation, we arrive at

$$3^{n+1} \cdot 4 - 7 = 2(3^n \cdot 4 - 7) + 7.$$

Do we have a solution to the difference equation?

(a) Yes

(b) No

5. After substituting a proposed solution into the difference equation, we arrive at

$$6(\sqrt{5})^{n+2} = 5 \cdot 6(\sqrt{5})^n.$$

Do we have a solution to the difference equation?

(a) Yes

(b) No

- 6. True or False $b_n = 2^n \times 5$ is a solution to $b_{n+1} = 2b_n$ with $b_0 = 5$.
 - (a) True, and I am very confident
 - (b) True, but I am not very confident
 - (c) False, but I am not very confident
 - (d) False, and I am very confident
- 7. True or False $a_n = 3^n \cdot 2$ is a solution to $a_{n+1} = 4a_n$ with $a_0 = 2$.
 - (a) True, and I am very confident
 - (b) True, but I am not very confident
 - (c) False, but I am not very confident
 - (d) False, and I am very confident
- 8. True or False $a_n = 3^n C$ is a solution to $a_{n+1} = 3a_n$.
 - (a) True, and I am very confident
 - (b) True, but I am not very confident
 - (c) False, but I am not very confident
 - (d) False, and I am very confident

9. True or False $a_n = 2n$ is a solution to $a_{n+1} = a_n - 5$ with $a_0 = 0$.

- (a) True, and I am very confident
- (b) True, but I am not very confident
- (c) False, but I am not very confident

- (d) False, and I am very confident
- 10. True or False $a_n = 6n + 3$ is a solution to $a_{n+1} = a_n + 6$ with $a_0 = 3$.
 - (a) True, and I am very confident
 - (b) True, but I am not very confident
 - (c) False, but I am not very confident
 - (d) False, and I am very confident

11. True or False $a_n = 3^n C + 2$ is a solution to $a_{n+1} = 3a_n - 4$.

- (a) True, and I am very confident
- (b) True, but I am not very confident
- (c) False, but I am not very confident
- (d) False, and I am very confident

12. True or False $a_n = 3^n \cdot 5 + 2$ is a solution to $a_{n+1} = 3a_n - 4$ with $a_0 = 2$.

- (a) True, and I am very confident
- (b) True, but I am not very confident
- (c) False, but I am not very confident
- (d) False, and I am very confident

13. True or False $a_n = 3^n \times 4 + 5$ is a solution to $a_{n+1} = 3a_n + 5$ with $a_0 = 9$.

- (a) True, and I am very confident
- (b) True, but I am not very confident
- (c) False, but I am not very confident
- (d) False, and I am very confident
- 14. A numerical solution to a difference equation is
 - (a) another difference equation.
 - (b) a number.
 - (c) a sequence.
 - (d) a function that describes a sequence.

- (e) None of the above
- 15. An analytic solution to a difference equation is
 - (a) another difference equation.
 - (b) a number.
 - (c) a sequence.
 - (d) a function that describes a sequence.
 - (e) None of the above