MathQuest: Linear Algebra

Matrix Inverses

1. Which of the following matrices does not have an inverse?

(a)	$\left[\begin{array}{rrr}1&2\\3&4\end{array}\right]$	
(b)	$\left[\begin{array}{rrr}2&2\\4&4\end{array}\right]$]
(c)	$\left[\begin{array}{c} -1\\ 0 \end{array}\right]$	$\begin{bmatrix} 0\\3 \end{bmatrix}$
(d)	$\left[\begin{array}{rrr} 0 & 4 \\ 2 & 0 \end{array}\right]$]

- (e) More than one of the above do not have inverses.
- (f) All have inverses.
- 2. When we put a matrix A into reduced row echelon form, we get the matrix $\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$. This means that
 - (a) Matrix A has no inverse.
 - (b) The matrix we have found is the inverse of matrix A.
 - (c) Matrix A has an inverse, but this isn't it.
 - (d) This tells us nothing about whether A has an inverse.

3. Let
$$A = \begin{bmatrix} 0 & 4 \\ 2 & 0 \end{bmatrix}$$
. What is A^{-1} ?
(a) $\begin{bmatrix} 0 & 4 \\ 2 & 0 \end{bmatrix}$.
(b) $\begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$.
(c) $\begin{bmatrix} 0 & 1/4 \\ 1/2 & 0 \end{bmatrix}$.
(d) $\begin{bmatrix} 0 & 1/2 \\ 1/4 & 0 \end{bmatrix}$.

- 4. We find that for a square coefficient matrix A, the homogeneous matrix equation $AX = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, has only the trivial solution $X = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. This means that
 - (a) Matrix A has no inverse.
 - (b) Matrix A has an inverse.
 - (c) This tells us nothing about whether A has an inverse.
- 5. True or False If A, B, and C are square matrices and we know that AB = AC, this means that matrix B is equal to matrix C.
 - (a) True, and I am very confident
 - (b) True, but I am not very confident
 - (c) False, but I am not very confident
 - (d) False, and I am very confident
- 6. True or False Suppose that A, B, and C are square matrices, and CA = B, and A is invertible. This means that $C = A^{-1}B$.
 - (a) True, and I am very confident
 - (b) True, but I am not very confident
 - (c) False, but I am not very confident
 - (d) False, and I am very confident
- 7. We know that $(5A)^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. What is matrix A?

(a)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1/5 & 0 \\ 0 & 1/5 \end{bmatrix}$$

(d)
$$\begin{bmatrix} -5 & 0 \\ 0 & -5 \end{bmatrix}$$

(e) There is no matrix A which solves this equation.

- 8. A and B are invertible matrices. If AB = C, then what is the inverse of C?
 - (a) $C^{-1} = A^{-1}B^{-1}$
 - (b) $C^{-1} = B^{-1}A^{-1}$
 - (c) $C^{-1} = AB^{-1}$
 - (d) $C^{-1} = BA^{-1}$
 - (e) More than one of the above is true.
 - (f) Just because A and B have inverses, this doesn't mean that C has an inverse.
- 9. Let A be a 2×2 matrix. The inverse of 3A is
 - (a) $\frac{1}{9}A^{-1}$
 - (b) $\frac{1}{3}A^{-1}$
 - (c) A^{-1}
 - (d) $3A^{-1}$
 - (e) Not enough information is given.
- 10. If A is an invertible matrix, what else must be true?
 - (a) If AB = C then $B = A^{-1}C$.
 - (b) A^2 is invertible.
 - (c) A^T is invertible.
 - (d) 5A is invertible.
 - (e) The reduced row echelon form of A is I.
 - (f) All of the above must be true.