MathQuest: Linear Algebra

Matrix Inverses

1. Which of the following matrices does not have an inverse?
(a) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
(b) $\left[\begin{array}{ll}2 & 2 \\ 4 & 4\end{array}\right]$
(c) $\left[\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right]$
(d) $\left[\begin{array}{ll}0 & 4 \\ 2 & 0\end{array}\right]$
(e) More than one of the above do not have inverses.
(f) All have inverses.
2. When we put a matrix A into reduced row echelon form, we get the matrix $\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]$. This means that
(a) Matrix A has no inverse.
(b) The matrix we have found is the inverse of matrix A.
(c) Matrix A has an inverse, but this isn't it.
(d) This tells us nothing about whether A has an inverse.
3. Let $A=\left[\begin{array}{ll}0 & 4 \\ 2 & 0\end{array}\right]$. What is A^{-1} ?
(a) $\left[\begin{array}{ll}0 & 4 \\ 2 & 0\end{array}\right]$.
(b) $\left[\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right]$.
(c) $\left[\begin{array}{cc}0 & 1 / 4 \\ 1 / 2 & 0\end{array}\right]$.
(d) $\left[\begin{array}{cc}0 & 1 / 2 \\ 1 / 4 & 0\end{array}\right]$.
4. We find that for a square coefficient matrix A, the homogeneous matrix equation $A X=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$, has only the trivial solution $X=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. This means that
(a) Matrix A has no inverse.
(b) Matrix A has an inverse.
(c) This tells us nothing about whether A has an inverse.
5. True or False If A, B, and C are square matrices and we know that $A B=A C$, this means that matrix B is equal to matrix C.
(a) True, and I am very confident
(b) True, but I am not very confident
(c) False, but I am not very confident
(d) False, and I am very confident
6. True or False Suppose that A, B, and C are square matrices, and $C A=B$, and A is invertible. This means that $C=A^{-1} B$.
(a) True, and I am very confident
(b) True, but I am not very confident
(c) False, but I am not very confident
(d) False, and I am very confident
7. We know that $(5 A)^{-1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. What is matrix A ?
(a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]$
(c) $\left[\begin{array}{cc}1 / 5 & 0 \\ 0 & 1 / 5\end{array}\right]$
(d) $\left[\begin{array}{cc}-5 & 0 \\ 0 & -5\end{array}\right]$
(e) There is no matrix A which solves this equation.
8. A and B are invertible matrices. If $A B=C$, then what is the inverse of C ?
(a) $C^{-1}=A^{-1} B^{-1}$
(b) $C^{-1}=B^{-1} A^{-1}$
(c) $C^{-1}=A B^{-1}$
(d) $C^{-1}=B A^{-1}$
(e) More than one of the above is true.
(f) Just because A and B have inverses, this doesn't mean that C has an inverse.
9. Let A be a 2×2 matrix. The inverse of $3 A$ is
(a) $\frac{1}{9} A^{-1}$
(b) $\frac{1}{3} A^{-1}$
(c) A^{-1}
(d) $3 A^{-1}$
(e) Not enough information is given.
10. If A is an invertible matrix, what else must be true?
(a) If $A B=C$ then $B=A^{-1} C$.
(b) A^{2} is invertible.
(c) A^{T} is invertible.
(d) $5 A$ is invertible.
(e) The reduced row echelon form of A is I.
(f) All of the above must be true.
