Classroom Voting Questions: Multivariable Calculus

13.4 The Cross Product

- 1. The cross product of $2\hat{i}$ and $3\hat{j}$ is
 - (a) $6\hat{k}$
 - (b) $-6\hat{k}$
 - (c) 0
 - (d) $6\hat{i}\hat{j}$
- 2. For the vectors $\vec{a}=4\hat{i}-\hat{j}+2\hat{k}$ and $\vec{b}=-\hat{i}+5\hat{j}+3\hat{k}$, the cross product $\vec{a}\times\vec{b}$ is
 - (a) $-13\hat{i} + 14\hat{j} + 19\hat{k}$
 - (b) $13\hat{i} + 14\hat{j} 19\hat{k}$
 - (c) $-13\hat{i} 14\hat{j} + 19\hat{k}$
 - (d) $13\hat{i} 14\hat{j} 19\hat{k}$
- 3. A vector that is normal to the plane containing the vectors $\vec{a} = 4\hat{i} \hat{j} + 2\hat{k}$ and $\vec{b} = -\hat{i} + 5\hat{j} + 3\hat{k}$ is
 - (a) $-13\hat{i} + 14\hat{j} + 19\hat{k}$
 - (b) $13\hat{i} + 14\hat{j} 19\hat{k}$
 - (c) $-13\hat{i} 14\hat{j} + 19\hat{k}$
 - (d) $13\hat{i} 14\hat{j} 19\hat{k}$
- 4. If $\vec{d} = \vec{a} \times \vec{b}$, then $\vec{a} \cdot \vec{d} =$
 - (a) $\vec{a} \times (\vec{b} \cdot \vec{b})$
 - (b) 0
 - (c) $\vec{a} \times \vec{a} \cdot \vec{b}$
 - (d) $(\vec{a} \cdot \vec{b}) \times \vec{b}$

- 5. For any vectors \vec{u} and \vec{v} , $\vec{u} \times \vec{v} = \vec{v} \times \vec{u}$
 - (a) True, and I am very confident
 - (b) True, but I am not very confident
 - (c) False, but I am not very confident
 - (d) False, and I am very confident
- 6. For any vectors \vec{u} and \vec{v} , $(\vec{u} \times \vec{v}) \times (\vec{v} \times \vec{u}) = (\vec{v} \times \vec{u}) \times (\vec{u} \times \vec{v})$
 - (a) True, and I am very confident
 - (b) True, but I am not very confident
 - (c) False, but I am not very confident
 - (d) False, and I am very confident