Classroom Voting Questions: Multivariable Calculus

15.1 Local Extrema

1. Which of these functions has a critical point at the origin?
(a) $f(x, y)=x^{2}+2 y^{3}$
(b) $f(x, y)=x^{2} y+4 x y+4 y$
(c) $f(x, y)=x^{2} y^{3}-x^{4}+2 y$
(d) $f(x, y)=x \cos y$
(e) All of the above
2. True or False? The function $f(x, y)=x^{2} y+4 x y+4 y$ has a local maximum at the origin.
(a) True, and I am very confident
(b) True, but I am not very confident
(c) False, but I am not very confident
(d) False, and I am very confident
3. Which of these functions does not have a critical point?
(a) $f(x, y)=x^{2}+2 y^{3}$
(b) $f(x, y)=x^{2} y+4 x y+4 y$
(c) $f(x, y)=x^{2} y^{3}-x^{4}+2 y$
(d) $f(x, y)=x \cos y$
(e) All have critical points
4. Which of these functions has a critical point at the origin?
(a) $f(x, y)=x^{2}+2 x+2 y^{3}-y^{2}$
(b) $f(x, y)=x^{2} y+x y$
(c) $f(x, y)=x^{2} y^{2}-(1 / 2) x^{4}+2 y$
(d) $f(x, y)=x^{4} y-7 y$
5. How would you classify the function $f(x, y)=x^{2} y+x y$ at the origin?
(a) This is a local maximum.
(b) This is a local minimum.
(c) This is a saddle point.
(d) We cannot tell.
(e) This is not a critical point.
6. Which of these functions does not have a critical point with $y=0$?
(a) $f(x, y)=x^{2}+2 x+2 y^{3}-y^{2}$
(b) $f(x, y)=x^{2} y+x y$
(c) $f(x, y)=x^{2} y^{2}-(1 / 2) x^{4}+2 y$
(d) $f(x, y)=x^{4} y-7 y$
7. Which of these functions does not have a critical point with $x=-1$?
(a) $f(x, y)=x^{2}+2 x+2 y^{3}-y^{2}$
(b) $f(x, y)=x^{2} y+x y$
(c) $f(x, y)=x^{2} y^{2}-(1 / 2) x^{4}+2 y$
(d) $f(x, y)=x^{4} y-7 y$
8. Which of the following points are critical points?

(a) A and C
(b) A, C, and D
(c) A, B, and C
(d) A, B, C, and D
9. Which of the following guarantees a saddle point of the function $f(x, y)$ at (a, b) ?
(a) $f_{x x}$ and $f_{y y}$ have the same sign at (a, b).
(b) $f_{x x}$ and $f_{y y}$ have opposite signs at (a, b).
(c) $f_{x y}$ is negative at (a, b).
(d) none of the above
