Classroom Voting Questions: Multivariable Calculus

15.1 Local Extrema

1. Which of these functions has a critical point at the origin?

(a)
$$f(x,y) = x^2 + 2y^3$$

(b)
$$f(x,y) = x^2y + 4xy + 4y$$

(c)
$$f(x,y) = x^2y^3 - x^4 + 2y$$

(d)
$$f(x,y) = x \cos y$$

(e) All of the above

2. True or False? The function $f(x,y) = x^2y + 4xy + 4y$ has a local maximum at the origin.

1

(a) True, and I am very confident

(b) True, but I am not very confident

(c) False, but I am not very confident

(d) False, and I am very confident

3. Which of these functions does not have a critical point?

(a)
$$f(x,y) = x^2 + 2y^3$$

(b)
$$f(x,y) = x^2y + 4xy + 4y$$

(c)
$$f(x,y) = x^2y^3 - x^4 + 2y$$

(d)
$$f(x,y) = x \cos y$$

(e) All have critical points

4. Which of these functions has a critical point at the origin?

(a)
$$f(x,y) = x^2 + 2x + 2y^3 - y^2$$

(b)
$$f(x,y) = x^2y + xy$$

(c)
$$f(x,y) = x^2y^2 - (1/2)x^4 + 2y$$

(d)
$$f(x,y) = x^4y - 7y$$

5. How would you classify the function $f(x,y) = x^2y + xy$ at the origin?

- (a) This is a local maximum.
- (b) This is a local minimum.
- (c) This is a saddle point.
- (d) We cannot tell.
- (e) This is not a critical point.

6. Which of these functions does not have a critical point with y = 0?

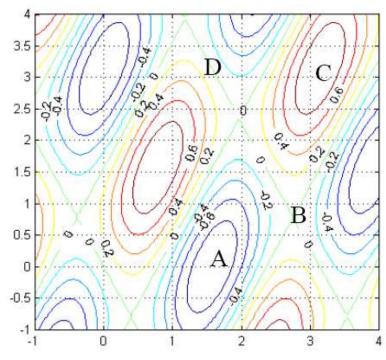
(a)
$$f(x,y) = x^2 + 2x + 2y^3 - y^2$$

(b)
$$f(x,y) = x^2y + xy$$

(c)
$$f(x,y) = x^2y^2 - (1/2)x^4 + 2y$$

(d)
$$f(x,y) = x^4y - 7y$$

7. Which of these functions does not have a critical point with x = -1?


(a)
$$f(x,y) = x^2 + 2x + 2y^3 - y^2$$

(b)
$$f(x,y) = x^2y + xy$$

(c)
$$f(x,y) = x^2y^2 - (1/2)x^4 + 2y$$

(d)
$$f(x,y) = x^4y - 7y$$

8. Which of the following points are critical points?

- (a) A and C
- (b) A, C, and D
- (c) A, B, and C
- (d) A, B, C, and D
- 9. Which of the following guarantees a saddle point of the function f(x, y) at (a, b)?
 - (a) f_{xx} and f_{yy} have the same sign at (a, b).
 - (b) f_{xx} and f_{yy} have opposite signs at (a, b).
 - (c) f_{xy} is negative at (a, b).
 - (d) none of the above