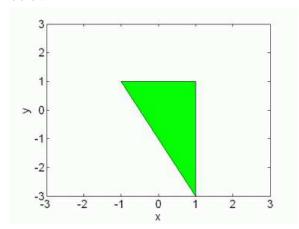
Classroom Voting Questions: Multivariable Calculus

16.2 Iterated Integrals

- 1. The integral $\int_0^1 \int_0^1 x^2 dx dy$ represents the
 - (a) Area under the curve $y = x^2$ between x = 0 and x = 1.
 - (b) Volume under the surface $z=x^2$ above the square $0 \le x, y \le 1$ on the xy-plane.
 - (c) Area under the curve $y = x^2$ above the square $0 \le x, y \le 1$ on the xy-plane.
- 2. The integral $\int_0^1 \int_x^1 dy dx$ represents the
 - (a) Area of a triangular region in the xy-plane.
 - (b) Volume under the plane z = 1 above a triangular region of the plane.
 - (c) Area of a square in the xy-plane.
- 3. Let f(x,y) be a positive function. Rank the following integrals from smallest to largest.

1


$$I_1 = \int_0^1 \int_{x^2}^1 f(x, y) dy dx \qquad I_2 = \int_0^1 \int_{x^3}^1 f(x, y) dy dx \qquad I_3 = \int_0^1 \int_0^1 f(x, y) dy dx$$

- (a) $I_1 < I_2 < I_3$
- (b) $I_1 < I_3 < I_2$
- (c) $I_2 < I_1 < I_3$
- (d) $I_2 < I_3 < I_1$
- (e) $I_3 < I_2 < I_1$
- (f) $I_3 < I_1 < I_2$
- 4. $\int_0^1 \int_0^{2-2x} f(x,y) dy dx$ is an integral over which region?
 - (a) The triangle with vertices (0,0), (2,0), (0,1).
 - (b) The triangle with vertices (0,0), (0,2), (1,0).
 - (c) The triangle with vertices (0,0), (2,0), (2,1).
 - (d) The triangle with vertices (0,0), (1,0), (1,2).

5. $\int_0^1 \int_{2y}^2 f(x,y) dx dy$ is an integral over which region?

- (a) The triangle with vertices (0,0), (2,0), (0,1).
- (b) The triangle with vertices (0,0), (0,2), (1,0).
- (c) The triangle with vertices (0,0), (2,0), (2,1).
- (d) The triangle with vertices (0,0), (1,0), (1,2).

6. Which of the following integrals has the proper limits to integrate the shaded region below?

- (a) $\int_{-1}^{1} \int_{-3}^{-2x-1} f(x,y) dy dx$
- (b) $\int_{-3}^{1} \int_{-\frac{1}{2}y \frac{1}{2}}^{1} f(x, y) dx dy$
- (c) $\int_{-1}^{1} \int_{-\frac{1}{2}x-1}^{1} f(x,y) dy dx$
- (d) $\int_{-3}^{1} \int_{-1}^{-\frac{1}{2}y \frac{1}{2}} f(x, y) dx dy$
- (e) None of the above

7. Which of the following integrals is equal to $\int_0^3 \int_0^{4x} f(x,y) dy dx$?

- (a) $\int_0^{4x} \int_0^3 f(x,y) dx dy$
- (b) $\int_0^{12} \int_{y/4}^3 f(x,y) dx dy$
- (c) $\int_0^{12} \int_3^{y/4} f(x,y) dx dy$
- (d) $\int_0^{12} \int_0^{y/4} f(x,y) dx dy$
- (e) $\int_0^3 \int_0^{4x} f(x, y) dx dy$

- 8. The region of integration in the integral $\int_0^2 \int_0^{2x} f(x,y) dy dx$ is a
 - (a) rectangle
 - (b) triangle with width 2 and height 4
 - (c) triangle with width 4 and height 2
 - (d) none of the above
- 9. The value of $\int_{-r}^{r} \int_{-\sqrt{r^2-x^2}}^{\sqrt{r^2-x^2}} x dy dx$ is
 - (a) πr
 - (b) $\pi/2$
 - (c) πr^2
 - (d) 0