Classroom Voting Questions: Multivariable Calculus

18.2 Computing Line Integrals Over Parameterized Curves

1. Which of the following is equivalent to the line integral of $\vec{F}(x,y)$ on the line segment from (1,1) to (3,4)?

(a)
$$\int_0^1 \vec{F}(1+2t,1+3t)dt$$

(b)
$$\int_0^1 \vec{F}(1+2t,1+3t) \cdot (2\hat{i}+3\hat{j})dt$$

(c)
$$\int_0^1 \vec{F}(3,4) \cdot (2\hat{i} + 3\hat{j}) dt$$

(d)
$$\int_0^1 \vec{F}(1+t,1+t) \cdot (2\hat{i}+3\hat{j})dt$$

2. Which of the following is equivalent to the line integral of $\vec{F}(x,y)$ on the line segment from (1,1) to (3,4)?

(a)
$$\int_0^2 \vec{F}(1+t, 1+1.5t) \cdot (\hat{i}+1.5\hat{j})dt$$

(b)
$$\int_0^2 \vec{F}(1+t, 1+1.5t) \cdot (2\hat{i}+3\hat{j})dt$$

(c)
$$\int_0^1 \vec{F}(1+t,1+1.5t) \cdot (\hat{i}+1.5\hat{j})dt$$

(d)
$$\int_0^1 \vec{F}(1+t, 1+1.5t) \cdot (2\hat{i}+3\hat{j})dt$$

3. If C_1 is the path parameterized by $\vec{r}_1(t) = \langle t, t \rangle$, $0 \le t \le 1$, and if C_2 is the path parameterized by $\vec{r}_2(t) = \langle t^2, t^2 \rangle$, $0 \le t \le 1$, and if $\vec{F} = x\hat{i} + y\hat{j}$, which of the following is true?

(a)
$$\int_{C_1} \vec{F} \cdot d\vec{r} > \int_{C_2} \vec{F} \cdot d\vec{r}$$

(b)
$$\int_{C_1} \vec{F} \cdot d\vec{r} < \int_{C_2} \vec{F} \cdot d\vec{r}$$

(c)
$$\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r}$$

4. If C_1 is the path parameterized by $\vec{r}_1(t) = \langle t, t \rangle$, $0 \le t \le 1$, and if C_2 is the path parameterized by $\vec{r}_2(t) = \langle 1 - t, 1 - t \rangle$, $0 \le t \le 1$, and if $\vec{F} = x\hat{i} + y\hat{j}$, which of the following is true?

1

(a)
$$\int_{C_1} \vec{F} \cdot d\vec{r} > \int_{C_2} \vec{F} \cdot d\vec{r}$$

- (b) $\int_{C_1} \vec{F} \cdot d\vec{r} < \int_{C_2} \vec{F} \cdot d\vec{r}$
- (c) $\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r}$
- 5. If C_1 is the path parameterized by $\vec{r}_1(t) = \langle t, t \rangle$, $0 \le t \le 1$, and if C_2 is the path parameterized by $\vec{r}_2(t) = \langle \sin t, \sin t \rangle$, $0 \le t \le 1$, and if $\vec{F} = x\hat{i} + y\hat{j}$, which of the following is true?
 - (a) $\int_{C_1} \vec{F} \cdot d\vec{r} > \int_{C_2} \vec{F} \cdot d\vec{r}$
 - (b) $\int_{C_1} \vec{F} \cdot d\vec{r} < \int_{C_2} \vec{F} \cdot d\vec{r}$
 - (c) $\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r}$
- 6. Consider the path C_1 parameterized by $\vec{r}_1(t) = (\cos t, \sin t)$, $0 \le t \le 2\pi$ and the path C_2 parameterized by $\vec{r}_2(t) = (2\cos t, 2\sin t)$, $0 \le t \le 2\pi$. Let \vec{F} be a vector field. Is it always true that $\int_{C_2} \vec{F} \cdot d\vec{r} = 2 \int_{C_1} \vec{F} \cdot d\vec{r}$?
 - (a) Yes
 - (b) No
- 7. Consider the path C_1 parameterized by $\vec{r}_1(t) = (\cos t, \sin t)$, $0 \le t \le 2\pi$ and the path C_2 parameterized by $\vec{r}_2(t) = (\cos 2t, \sin 2t)$, $0 \le t \le 2\pi$. Let \vec{F} be a vector field. Is it always true that $\int_{C_2} \vec{F} \cdot d\vec{r} = 2 \int_{C_1} \vec{F} \cdot d\vec{r}$?
 - (a) Yes
 - (b) No