Classroom Voting Questions: Multivariable Calculus

20.3 The Curl of a Vector Field

1. The pictures below show top views of three vector fields, all of which have no z component. Which one has the curl pointing in the positive \hat{k} direction the origin?

(a) the one on the left
(b) the one in the middle
(c) the one on the right
(d) none of them
2. Let $\vec{F}(x, y, z)$ be a vector field and let $f(x, y, z)$ be a scalar function. If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, which of the following is not defined?
(a) $\nabla \times f$
(b) $\nabla \times \vec{F}+\nabla f$
(c) $\nabla \times(\vec{r} \times \nabla f)$
(d) $f+\nabla \cdot \vec{F}$
(e) More than one of the above
3. Which one of the following vector fields has a curl which points purely in the \hat{j} ?
(a) $y \hat{i}-x \hat{j}+z \hat{k}$
(b) $y \hat{i}+z \hat{j}+x \hat{k}$
(c) $-z \hat{i}+y \hat{j}+x \hat{k}$
(d) $x \hat{i}+z \hat{j}-y \hat{k}$
4. True or False? If all the flow lines of a vector field \vec{F} are straight lines, then $\nabla \times \vec{F}=0$.
(a) True, and I am very confident
(b) True, but I am not very confident
(c) False, but I am not very confident
(d) False, and I am very confident
5. True or False? If all the flow lines of a vector field \vec{F} lie in planes parallel to the $x y$-plane, then the curl of \vec{F} is a multiple of \hat{k} at every point.
(a) True, and I am very confident
(b) True, but I am not very confident
(c) False, but I am not very confident
(d) False, and I am very confident
