20.3 The Curl of a Vector Field

1. The pictures below show top views of three vector fields, all of which have no \(z \) component. Which one has the curl pointing in the positive \(\hat{k} \) direction at the origin?

 (a) the one on the left
 (b) the one in the middle
 (c) the one on the right
 (d) none of them

2. Let \(\vec{F}(x, y, z) \) be a vector field and let \(f(x, y, z) \) be a scalar function. If \(\vec{r} = x\hat{i} + y\hat{j} + z\hat{k} \), which of the following is not defined?

 (a) \(\nabla \times f \)
 (b) \(\nabla \times \vec{F} + \nabla f \)
 (c) \(\nabla \times (\vec{r} \times \nabla f) \)
 (d) \(f + \nabla \cdot \vec{F} \)
 (e) More than one of the above

3. Which one of the following vector fields has a curl which points purely in the \(\hat{j} \)?

 (a) \(y\hat{i} - x\hat{j} + z\hat{k} \)
 (b) \(y\hat{i} + z\hat{j} + x\hat{k} \)
 (c) \(-z\hat{i} + y\hat{j} + x\hat{k} \)
(d) $x\hat{i} + z\hat{j} - y\hat{k}$

4. True or False? If all the flow lines of a vector field \vec{F} are straight lines, then $\nabla \times \vec{F} = 0$.

(a) True, and I am very confident
(b) True, but I am not very confident
(c) False, but I am not very confident
(d) False, and I am very confident

5. True or False? If all the flow lines of a vector field \vec{F} lie in planes parallel to the xy-plane, then the curl of \vec{F} is a multiple of \hat{k} at every point.

(a) True, and I am very confident
(b) True, but I am not very confident
(c) False, but I am not very confident
(d) False, and I am very confident