Classroom Voting Questions: Multivariable Calculus

20.4 Stokes’ Theorem

1. Which of the following facts about \(\vec{F} = \rho \hat{\rho} \) is implied by Stokes’ Theorem?

 (a) The line integral from (0,0,0) to (1,1,1) is equal to 3/2.
 (b) \(\vec{F} \) has positive divergence everywhere.
 (c) The line integral on any closed curve is zero.
 (d) The curl of \(\vec{F} \) is non-zero.

2. What can be said about the vector field \(\nabla f \) in terms of curl?

 (a) Its curl is negative.
 (b) Its curl is zero.
 (c) Its curl is positive.
 (d) Its curl depends on the function \(f \).

3. The figure below shows the vector field \(\nabla \times \vec{F} \). No formula for the vector field \(\vec{F} \) is given. The oriented curve \(C \) is a circle, perpendicular to \(\nabla \times \vec{F} \). The sign of the line integral \(\int_{\gamma} \vec{F} \cdot d\vec{r} \)
(a) is positive.
(b) is negative.
(c) is zero.
(d) can’t be determined without further information.

4. The figure below shows the vector field \(\vec{F} \). The surface \(S \) is oriented upward and perpendicular to \(\vec{F} \) at every point. The sign of the flux of \(\nabla \times \vec{F} \) through the surface

![Diagram of vector field F](image)

(a) is positive.
(b) is negative.
(c) is zero.
(d) can’t be determined without further information.

5. The vector field \(\vec{F} \) has curl \(\nabla \times \vec{F} = 3 \hat{i} + 4 \hat{j} + 2 \hat{k} \). What is the magnitude of the circulation of \(\vec{F} \) around the perimeter of the square with corners at coordinates \((1,2,3), (4,2,3), (4,2,6), \) and \((1,2,6)\)?

(a) 0
(b) 18
(c) 27
(d) 36
(e) 81
(f) None of the above