Classroom Voting Questions: Precalculus

The Law of Sines and the Law of Cosines

- 1. Given a triangle with angles A, B, and C and opposite sides a, b, and c, find the measurements of the remaining angle and sides assuming that $B = 30^{\circ}$, $C = 100^{\circ}$ and b = 20 feet.
 - (a) $A = 50^{\circ}, a \approx 39.39$ feet, $c \approx 30.64$ feet
 - (b) $A = 50^{\circ}, a \approx 10.50$ feet, $c \approx 20.26$ feet
 - (c) $A = 50^{\circ}, a \approx 30.64$ feet, $c \approx 39.39$ feet
 - (d) $A = 230^{\circ}, a \approx 30.64$ feet, $c \approx 39.39$ feet
- 2. A big pine tree has grown so that it is tilted 3° from vertical toward the sun. When its shadow is 20 feet long, the angle of elevation from the tip of its shadow to the top of the tree is 60°. Approximately how tall is the tree (i.e. what is its length)?
 - (a) 32 feet
 - (b) 38 feet
 - (c) 44 feet
 - (d) 331 feet
- 3. True or False: Two angles and a side determine a unique triangle.
 - (a) True, and I am very confident.
 - (b) True, but I am not very confident.
 - (c) False, but I am not very confident.
 - (d) False, and I am very confident.
- 4. True or False: Given the measurements of any two angles and one side of an oblique triangle, the triangle can be completely solved using the law of sines.
 - (a) True, and I am very confident.
 - (b) True, but I am not very confident.
 - (c) False, but I am not very confident.
 - (d) False, and I am very confident.

- 5. True or False: Given the measurements of any two sides and an angle, the law of sines can be used to solve any oblique triangle.
 - (a) True, and I am very confident.
 - (b) True, but I am not very confident.
 - (c) False, but I am not very confident.
 - (d) False, and I am very confident.
- 6. Suppose you are to construct a triangle given the lengths of two sides a and b and the measurement of opposite angle A. How many possible triangles can you construct if A is acute?
 - (a) none
 - (b) one
 - (c) two
 - (d) two of the above
 - (e) all of the above
- 7. Suppose you are to construct a triangle given the lengths of two sides a and b and the measurement of opposite angle A. How many possible triangles can you construct if A is obtuse?
 - (a) none
 - (b) one
 - (c) two
 - (d) two of the above
 - (e) all of the above
- 8. Given an oblique triangle with sides a = 6 and b = 8, and opposite angle $A = 30^{\circ}$, find the measurement of opposite angle B.
 - (a) $B \approx 42^{\circ}$
 - (b) $B \approx 138^{\circ}$
 - (c) either (a) or (b)
 - (d) There is no solution.

- 9. Given an oblique triangle with sides a = 3 and b = 8, and opposite angle $A = 30^{\circ}$, find the measurement of opposite angle B.
 - (a) $B \approx 11^{\circ}$
 - (b) $B \approx 42^{\circ}$
 - (c) either (a) or (b)
 - (d) There is no solution.
- 10. A person leaves his house and walks 2 miles west and then 4 miles northwest. Approximately how far is he from home?
 - (a) 31.3 miles
 - (b) 2.95 miles
 - (c) 6 miles
 - (d) 5.6 miles
- 11. Given a triangle with sides a = 6, b = 8, and c = 11, find opposite angles A, B, and C.
 - (a) $A \approx 32^{\circ}, B \approx 103^{\circ}, C \approx 45^{\circ}$
 - (b) $A \approx 45^{\circ}, B \approx 32^{\circ}, C \approx 103^{\circ}$
 - (c) $A \approx 32^{\circ}, B \approx 45^{\circ}, C \approx 103^{\circ}$
 - (d) There is no solution.
- 12. Triangle ABC has sides of length a, b, and c, and angles of measure α , β , and γ opposite those sides, respectively. If $\alpha = 42^{\circ}$, $\gamma = 59^{\circ}$, and b = 45, find a.

(a)	$45\sin 42^\circ$
	$\sin 79^{\circ}$
(b)	$45\sin 42^\circ$
	$\sin 59^{\circ}$
(c)	$45\sin79^\circ$
	$\sin 42^{\circ}$
(d)	$45\sin59^\circ$
	$\sin 42^{\circ}$

13. Alan at position A spots a deer bearing S43°E. Bob at position B, 700 meters due east of position A, spots the deer bearing S65°W. How far from Alan is the deer?

(a)
$$\frac{700 \sin 43^{\circ}}{\sin 72^{\circ}} \text{ meters}$$

(b)
$$\frac{700 \sin 65^{\circ}}{\sin 72^{\circ}} \text{ meters}$$

(c)
$$\frac{700 \sin 47^{\circ}}{\sin 108^{\circ}} \text{ meters}$$

(d)
$$\frac{700 \sin 25^{\circ}}{\sin 108^{\circ}} \text{ meters}$$

- 14. Triangle ABC has sides of length a, b, and c, and angles of measure α , β , and γ opposite those sides, respectively. If $\alpha = 73^{\circ}$, b = 7.0, and c = 3.0, find a.
 - (a) $58 42\cos 73^\circ$
 - (b) $\sqrt{58 42\cos 73^\circ}$
 - (c) $58 21 \cos 73^{\circ}$
 - (d) $\sqrt{58 21 \cos 73^\circ}$
- 15. Triangle ABC has sides of length a, b, and c, and angles of measure α , β , and γ opposite those sides, respectively. If a = 5, b = 4, and c = 2, find α .

(a)
$$\cos\left(\frac{5}{16}\right)$$

(b) $\cos^{-1}\left(\frac{5}{16}\right)$
(c) $\cos\left(-\frac{5}{16}\right)$
(d) $\cos^{-1}\left(-\frac{5}{16}\right)$