Classroom Voting Questions: Precalculus

Conic Sections

1. Find an equation of a parabola that has vertex at the origin, opens right, and passes through (9, -2).

(a)
$$y = \frac{2}{81}x^2$$

(b)
$$y = -\frac{2}{81}x^2$$

(c)
$$x = \frac{9}{4}y^2$$

(d)
$$x = -\frac{9}{4}y^2$$

2. Find an equation of the parabola that has vertex (2,1) and directrix y=6.

(a)
$$(x-2)^2 = 20(y-1)$$

(b)
$$(x-2)^2 = -20(y-1)$$

(c)
$$(y-1)^2 = 20(x-2)$$

(d)
$$(y-1)^2 = -20(x-2)$$

3. Find the vertices and the endpoints of the minor axis for the ellipse given by the equation $9x^2 + 4y^2 = 16$.

(a) vertices:
$$(2,0)$$
 and $(-2,0)$; endpoints of minor axis: $(0,\frac{4}{3})$ and $(0,-\frac{4}{3})$

(b) vertices:
$$(0,2)$$
 and $(0,-2)$; endpoints of minor axis: $(\frac{4}{3},0)$ and $(-\frac{4}{3},0)$

(c) vertices:
$$(2,0)$$
 and $(-2,0)$; endpoints of minor axis: $(0,\frac{3}{4})$ and $(0,-\frac{3}{4})$

(d) vertices:
$$(0,2)$$
 and $(0,-2)$; endpoints of minor axis: $(\frac{3}{4},0)$ and $(-\frac{3}{4},0)$

4. Find an equation for the ellipse that has vertices at (0,3) and (0,-3) and foci at (0,2) and (0,-2).

1

(a)
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

(b)
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

- (c) $\frac{x^2}{5} + \frac{y^2}{9} = 1$
- (d) $\frac{x^2}{9} + \frac{y^2}{5} = 1$
- 5. What is the equation of the ellipse graphed below?

(a)
$$\frac{(x+3)^2}{16} + \frac{(y+1)^2}{4} = 1$$

(b)
$$\frac{(x+3)^2}{64} + \frac{(y+1)^2}{16} = 1$$

(c)
$$\frac{(x-3)^2}{16} + \frac{(y-1)^2}{4} = 1$$

(d)
$$\frac{(x-3)^2}{64} + \frac{(y-1)^2}{16} = 1$$

6. Find equations for the asymptotes of the hyperbola given by the equation $y^2 - \frac{x^2}{2} = 4$.

(a)
$$y = \pm \frac{1}{2}x$$

(b)
$$y = \pm \frac{1}{\sqrt{2}}x$$

(c)
$$y = \pm \sqrt{2}x$$

(d)
$$y = \pm 2x$$

- 7. Find the center of the hyperbola given by the equation $4x^2 9y^2 + 16x + 18y = 29$.
 - (a) (2,1)
 - (b) (2,-1)
 - (c) (-2,1)
 - (d) (-2, -1)