Classroom Voting Questions: Precalculus

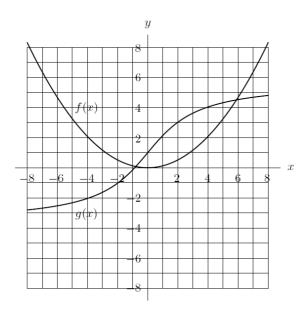
New Functions From Old: Compositions, Inverses, and Transforms

1. The functions f and g have values given in the table below. What is the value of f(g(0))?

x	-2	-1	0	1	2
f(x)	1	0	-2	2	-1
g(x)	-1	1	2	0	-2

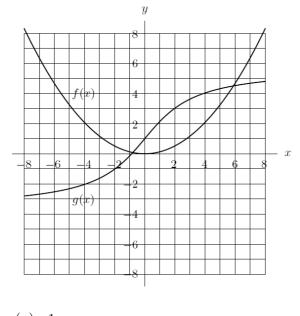
- (a) -2
- (b) -1
- (c) 0
- (d) 1
- (e) 2
- 2. The functions f and g have values given in the table below. If f(g(x)) = 1, then what is x?

x	-2	-1	0	1	2
f(x)	1	0	-2	2	-1
g(x)	-1	1	2	0	-2


(a) -2

(b) -1

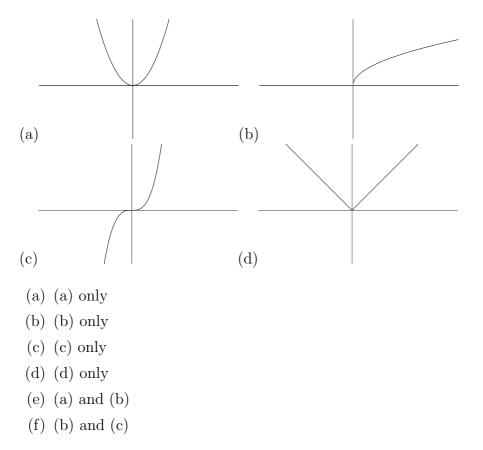
(c) 0


(d) 1

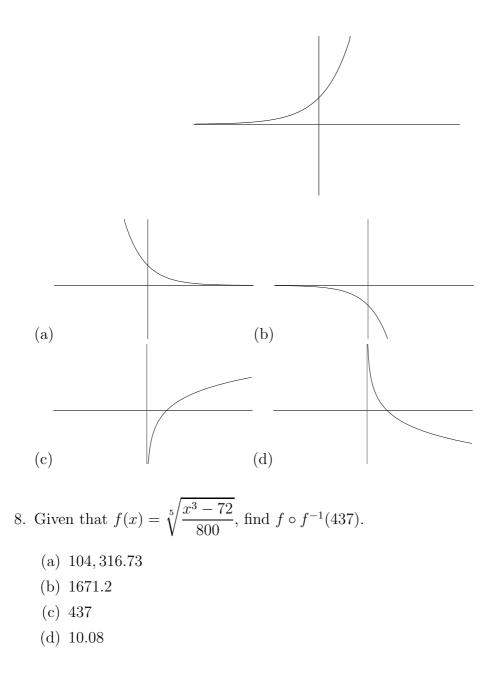
- (e) 2
- 3. The graphs of f and g are shown in the figure below. Estimate the value of g(f(3)).

- (a) -1
- (b) 0
- (c) 1
- (d) 2
- (e) 3
- (f) 5

4. The graphs of f and g are shown in the figure below. Estimate the value of f(g(2)).

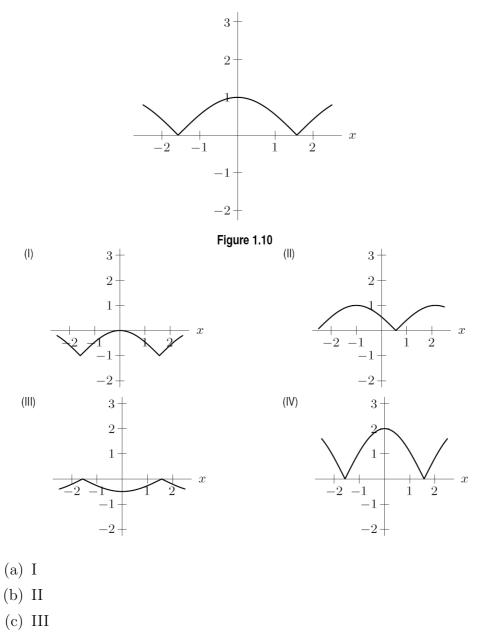

- (a) -1
- (b) 0

- (c) 1(d) 2
- (u) 2
- (e) 3
- (f) 5


5. If
$$P = f(t) = 3 + 4t$$
, find $f^{-1}(P)$.

(a) $f^{-1}(P) = 3 + 4P$ (b) $f^{-1}(P) = \frac{P-3}{4}$ (c) $f^{-1}(P) = \frac{P-4}{3}$ (d) $f^{-1}(P) = 4(P+3)$ (e) $f^{-1}(P) = \frac{P+3}{4}$

6. Which of these functions has an inverse?


7. The following is a graph of f(x). Which graph below is the inverse?

9. If
$$f(x) = \frac{x}{x^2 + 1}$$
, what is $f^{-1} \circ f(-2)$?
(a) $-\frac{2}{5}$
(b) $\frac{2}{3}$
(c) $-\frac{5}{2}$
(d) -2

10. If (4, -2) is a point on the graph of y = f(x), which of the following points is on the graph of $y = f^{-1}(x)$?

- (a) (-2, 4)(b) (-4, 2)(c) $(\frac{1}{4}, -\frac{1}{2})$ (d) $(-\frac{1}{4}, \frac{1}{2})$
- 11. Find the inverse of $f(x) = \frac{1}{x}$.
 - (a) $f^{-1}(x) = \frac{x}{1}$ (b) $f^{-1}(x) = x$ (c) $f^{-1}(x) = \frac{1}{x}$ (d) $f^{-1}(x) = xy$
- 12. A function is given in Figure 1.10 below. Which one of the other graphs could be a graph of f(x+h)?

(d) IV

13. How is the graph of $y = 2^{x-1} + 3$ obtained from the graph of $y = 2^x$?

- (a) Move 1 down and 3 right
- (b) Move 1 left and 3 up
- (c) Move 1 up and 3 right
- (d) Move 1 right and 3 up

- 14. The function f(x) goes through the point A with coordinates (2,3). $g(x) = 2f(\frac{1}{3}x 2) + 4$. What are the coordinates of point A in the function g(x)?
 - (a) (4, 10)(b) $(4, -\frac{5}{2})$ (c) (12, 10)(d) $(-\frac{4}{3}, 10)$ (e) $(-\frac{4}{3}, -\frac{5}{2})$
- 15. The point (4, 1) is on the graph of a function f. Find the corresponding point on the graph of y = f(x 2).
 - (a) (6,1)
 - (b) (2,1)
 - (c) (4,3)
 - (d) (4, -1)
- 16. The point (6,1) is on the graph of a function f. Find the corresponding point on the graph of y = f(2x).
 - (a) (12, 1)
 - (b) (3,1)
 - (c) (6, 2)
 - (d) $(6, \frac{1}{2})$
- 17. Given the graph of a function f(x), what sequence of activities best describes the process you might go through to graph g(x) = 5f(-x)?
 - (a) Expand the graph by a factor of 5, then reflect it across the y-axis.
 - (b) Expand the graph by a factor of 5, then reflect it across the x-axis.
 - (c) Reflect the graph across the y-axis, then expand it by a factor of 5.
 - (d) Reflect the graph across the x-axis, then expand it by a factor of 5.
 - (e) More than 1 of the above.
 - (f) None of the above.

- 18. Given the graph of a function f(x), what sequence of activities best describes the process you might go through to graph g(x) = -f(x) + 2?
 - (a) Move the graph up 2 units, then reflect it across the x-axis.
 - (b) Move the graph up 2 units, then reflect it across the *y*-axis.
 - (c) Reflect the graph across the y-axis, then move it up by 2 units.
 - (d) Reflect the graph across the x-axis, then move it up 2 units.
 - (e) More than 1 of the above.
 - (f) None of the above.
- 19. Take the function f(x) and "Shift the function right h units. Reflect the result across the y-axis, then reflect the result across the x-axis. Finally shift the result up k units." The end result is:
 - (a) f(x+h) + k
 - (b) f(x-h) + k
 - (c) -f(-x-h) + k
 - (d) -f(-x+h) + k
- 20. Given f(x) = x + 1 and $g(x) = 3x^2 2x$, what is the composition g(f(x)).
 - (a) $3x^2 2x + 1$ (b) $(3x^2 - 2x)(x + 1)$ (c) $3x^2 + 4x + 1$ (d) $3(x + 1)^2 - 2x$
- 21. Write $h(x) = e^{3x/2}$ as a composition of functions: f(g(x)). f(x) =_____, g(x) =_____.
 - (a) $e^x, 3x/2$ (b) $3x/2, e^x$
 - (c) $x, e^{3x/2}$
 - (d) $x/2, 3e^x$

22. If $f(x) = x^2 + 6$ and g(x) = x - 3, what is $f \circ g(x)$?

(a) $x^2 + 3$

(b)
$$x^2 - 6x + 15$$

(c) $x^2 - 3$
(d) $x^3 - 3x^2 + 6x - 18$

23. Which of the following functions IS invertible?

(a) $f(x) = -x^4 + 7$ (b) $g(x) = e^{3x/2}$ (c) $h(x) = \cos(x)$ (d) k(x) = |x|

24. Let f(x) = x - 2 and $g(x) = 3 - x^2$. Find g(f(2)).

- (a) -3
- (b) 0
- (c) 3
- (d) 2

25. If P = f(t) = 3 + 4t, find $f^{-1}(7)$.

- (a) 31
- (b) $\frac{1}{7}$
- (c) 0
- (d) 1
- 26. Let $f(x) = x^2$ and g(x) = x + 2. True or false? The domain of the function $\frac{f}{g}$ is \mathbb{R} , all real numbers.
 - (a) True, and I am very confident.
 - (b) True, but I am not very confident.
 - (c) False, but I am not very confident.
 - (d) False, and I am very confident.

27. Let $f(x) = x^2 - 4$ and $g(x) = \sqrt{x}$. Find $(g \circ f)(x)$ and the domain of $g \circ f$.

- (a) $\sqrt{x^2-4}$; Domain: $(-\infty, -2] \cup [2, \infty)$
- (b) x 4; Domain: \mathbb{R}
- (c) x 4; Domain: $[0, \infty)$
- (d) $\sqrt{x^2-4}$; Domain: $[0,\infty)$
- (e) $\sqrt{x(x^2-4)}$; Domain: $[0,\infty)$