Classroom Voting Questions: Precalculus

Logarithmic Functions

1. A logarithmic function of the form $f(x) = \log_a x$ will always pass through the point (1,0).

(b)

- (a) True, and I am very confident.
- (b) True, but I am not very confident.
- (c) False, but I am not very confident.
- (d) False, and I am very confident.
- 2. Which is a graph of $y = \ln x$?

3. The graph below could be that of

(a)
$$y = \ln x + \frac{1}{2}$$

(b)
$$y = \ln x - \frac{1}{2}$$

(c)
$$y = \ln\left(x + \frac{1}{2}\right)$$

(d)
$$y = \ln\left(x - \frac{1}{2}\right)$$

4. Which equation matches this graph?

(a)
$$y = b^x$$
 with $b > 1$

(b)
$$y = b^x$$
 with $0 < b < 1$

(c)
$$y = \log_b x$$
 with $b > 1$

(d)
$$y = \log_b x$$
 with $0 < b < 1$

5. Which equation matches this graph?

- (a) $y = b^x$ with b > 1
- (b) $y = b^x$ with 0 < b < 1
- (c) $y = \log_b x$ with b > 1
- (d) $y = \log_b x$ with 0 < b < 1
- 6. Which of the following is a graph of $y = \log_2 x$?

7. Which of the following is a graph of $y = \log_{\frac{1}{2}} x$?

- 8. Which of the following functions have vertical asymptotes of x = 3?
 - (a) $y = \ln(x/3)$
 - (b) $y = \ln(x 3)$
 - (c) $y = \ln(x+3)$
 - (d) $y = 3 \ln x$
- 9. $\log\left(\frac{M-N}{M+N}\right) =$
 - (a) $2 \log M$
 - (b) $2 \log N$
 - (c) $-2 \log N$
 - (d) $\log(M-N) \log(M+N)$
- 10. If $\log_{10}(x a) = n$, then x =
 - (a) 10^{a+n}
 - (b) $a + 10^n$
 - (c) $n + 10^a$
 - (d) $n + a^{10}$
- 11. What is the exponential form of $\log_r m = j$?
 - (a) $r^{j} = m$
 - (b) $j^r = m$
 - (c) $m^j = r$
 - (d) $r^m = j$
- 12. What is the logarithmic form of $k^p = d$?

- (a) $\log_d k = p$
- (b) $\log_k d = p$
- (c) $\log_p d = p$
- (d) $\log_k p = d$

13. What is the value of $\log_{11} 86$? (Calculators are allowed.)

- (a) .4049
- (b) .5383
- (c) 1.8576
- (d) -2.0564

14. What is $3 = \log_2 8$ in exponential form?

- (a) $2^8 = 3$
- (b) $3^2 = 8$
- (c) $8^3 = 2$
- (d) $2^3 = 8$

15. What is $k = \log_m q$ in exponential form?

- (a) $m^k = q$
- (b) $k^q = m$
- (c) $m^q = k$
- (d) $q^m = k$

16. What is $4^2 = 16$ in logarithmic form?

- (a) $\log_2 4 = 16$
- (b) $\log_4 16 = 2$
- (c) $\log_4 2 = 16$
- (d) $\log_{16} 4 = 2$

17. What is $3^{-1} = \frac{1}{3}$ in logarithmic form?

- (a) $\log_3(-1) = \frac{1}{3}$
- (b) $\log_{-1} \frac{1}{3} = 3$
- (c) $\log_{\frac{1}{3}} 3 = -1$
- (d) $\log_3 \frac{1}{3} = -1$

18. What is the inverse of the following function:

$$P = f(t) = 16\ln(14t)$$

- (a) $f^{-1}(P) = \frac{1}{14}e^{16P}$
- (b) $f^{-1}(P) = \frac{1}{14}e^{P/16}$
- (c) $f^{-1}(P) = \frac{1}{14} \ln(P/16)$
- (d) $f^{-1}(P) = \frac{\ln 16}{14}P$

19. Solve for x if $8y = 3e^x$.

- (a) $x = \ln 8 + \ln 3 + \ln y$
- (b) $x = \ln 3 \ln 8 + \ln y$
- (c) $x = \ln 8 + \ln y \ln 3$
- (d) $x = \ln 3 \ln 8 \ln y$

20. Solve for x if $y = e + 2^x$

- (a) $x = \frac{\ln y 1}{\ln 2}$
- (b) $x = \frac{\ln(y-1)}{\ln 2}$
- (c) $x = \frac{\ln y}{\ln 2} 1$
- (d) $x = \frac{\ln(y-e)}{\ln 2}$

21. Write the following expression using a single logarithmic function:

$$\ln(2x^3 + 1) + 5\ln(3 - x) - \ln(6x^5 + 2x + 1).$$

- (a) $\ln(-6x^5 + 2x^3 7x + 15)$
- (b) $\ln[(2x^3+1)(15-5x)(-6x^5-2x-1)]$

(c)
$$\ln\left(\frac{(2x^3+1)(3-x)^5}{6x^5+2x+1}\right)$$

(d)
$$\ln \left(\frac{(2x^3+1)(15-5x)}{6x^5+2x+1} \right)$$

$$22. \log\left(\frac{a^4b^7}{c^5}\right) =$$

(a)
$$\log(a^4) + \log(b^7) + \log(c^5)$$

(b)
$$4 \log a + 7 \log b - 5 \log c$$

(c)
$$28 \log ab - 5 \log c$$

(d)
$$\frac{28}{5} \left(\log a + \log b - \log c \right)$$

23. Simplify the following expression: $\ln \left(\frac{\sqrt{x^2 + 1}(x^3 - 4)}{(3x - 7)^2} \right)$.

(a)
$$\frac{1}{2}\ln(x^2+1) + \ln(x^3+4) - 2\ln(3x-7)$$

(b)
$$\ln\left(\frac{1}{2}(x^2+1)\right) + \ln(x^3+4) - 2\ln(3x-7)$$

(c)
$$\ln(x^2+1)\ln(x^3+4)\ln(3x-7)$$

(d)
$$\ln[(x^2+1)(x^3+4)(3x-7)]$$

24. 25 rabbits are introduced to an island, where they quickly reproduce and the rabbit population grows according to an exponential model $P(t) = P_0 e^{kt}$ so that the population doubles every four months. If t is in months, what is the value of the continuous growth rate k?

(a)
$$k = \frac{1}{2} \ln 4$$

(b)
$$k = \frac{1}{4} \ln 2$$

(c)
$$k = \frac{1}{50} \ln \frac{4}{25}$$

(d)
$$k = \frac{4}{25} \ln \frac{1}{50}$$

25. Simplify $(\log_{16} 4) \left(\log_3 \frac{1}{9}\right)$.

- (a) $\frac{16}{3}$ (b) $\frac{4}{9}$ (c) 1 (d) -1