Classroom Voting Questions: Precalculus

Logarithmic Functions

- 1. A logarithmic function of the form $f(x) = \log_a x$ will always pass through the point (1, 0).
 - (a) True, and I am very confident.
 - (b) True, but I am not very confident.
 - (c) False, but I am not very confident.
 - (d) False, and I am very confident.

3. The graph below could be that of

4. Which equation matches this graph?

5. Which equation matches this graph?

- (c) $y = \log_b x$ with b > 1
- (d) $y = \log_b x$ with 0 < b < 1
- 6. Which of the following is a graph of $y = \log_2 x$?

7. Which of the following is a graph of $y = \log_{\frac{1}{2}} x$?

8. Which of the following functions have vertical asymptotes of x = 3?

- (a) $y = \ln(x/3)$ (b) $y = \ln(x-3)$ (c) $y = \ln(x+3)$ (d) $y = 3 \ln x$
- 9. $\log\left(\frac{M-N}{M+N}\right) =$
 - (a) $2\log M$
 - (b) $2\log N$
 - (c) $-2\log N$
 - (d) $\log(M N) \log(M + N)$

10. If $\log_{10}(x-a) = n$, then x =

(a) 10^{a+n} (b) $a + 10^{n}$ (c) $n + 10^{a}$ (d) $n + a^{10}$

11. What is the exponential form of $\log_r m = j$?

- (a) $r^{j} = m$ (b) $j^{r} = m$
- (c) $m^j = r$
- (d) $r^m = j$

12. What is the logarithmic form of $k^p = d$?

- (a) $\log_d k = p$
- (b) $\log_k d = p$
- (c) $\log_p d = p$
- (d) $\log_k p = d$

13. What is the value of $\log_{11} 86$? (Calculators are allowed.)

- (a) .4049
- (b) .5383
- (c) 1.8576
- (d) -2.0564
- 14. What is $3 = \log_2 8$ in exponential form?
 - (a) $2^8 = 3$
 - (b) $3^2 = 8$
 - (c) $8^3 = 2$
 - (d) $2^3 = 8$
- 15. What is $k = \log_m q$ in exponential form?
 - (a) $m^k = q$ (b) $k^q = m$
 - (c) $m^q = k$
 - (d) $q^m = k$
 - (u) $q = \kappa$
- 16. What is $4^2 = 16$ in logarithmic form?
 - (a) $\log_2 4 = 16$ (b) $\log_4 16 = 2$
 - (c) $\log_4 2 = 16$
 - (d) $\log_{16} 4 = 2$

17. What is $3^{-1} = \frac{1}{3}$ in logarithmic form?

(a)
$$\log_3(-1) = \frac{1}{3}$$

(b) $\log_{-1} \frac{1}{3} = 3$
(c) $\log_{\frac{1}{3}} 3 = -1$
(d) $\log_3 \frac{1}{3} = -1$

18. What is the inverse of the following function:

$$P = f(t) = 16\ln(14t)$$

(a) $f^{-1}(P) = \frac{1}{14}e^{16P}$ (b) $f^{-1}(P) = \frac{1}{14}e^{P/16}$ (c) $f^{-1}(P) = \frac{1}{14}\ln(P/16)$ (d) $f^{-1}(P) = \frac{\ln 16}{14}P$

19. Solve for x if $8y = 3e^x$.

(a) $x = \ln 8 + \ln 3 + \ln y$ (b) $x = \ln 3 - \ln 8 + \ln y$

- (c) $x = \ln 8 + \ln y \ln 3$
- (d) $x = \ln 3 \ln 8 \ln y$
- 20. Solve for x if $y = e + 2^x$

(a)
$$x = \frac{\ln y - 1}{\ln 2}$$

(b) $x = \frac{\ln(y - 1)}{\ln 2}$
(c) $x = \frac{\ln y}{\ln 2} - 1$
(d) $x = \frac{\ln(y - e)}{\ln 2}$

- 21. Write the following expression using a single logarithmic function: $\ln(2x^3 + 1) + 5\ln(3 - x) - \ln(6x^5 + 2x + 1).$
 - (a) $\ln(-6x^5 + 2x^3 7x + 15)$ (b) $\ln[(2x^3 + 1)(15 - 5x)(-6x^5 - 2x - 1)]$

(c)
$$\ln\left(\frac{(2x^3+1)(3-x)^5}{6x^5+2x+1}\right)$$

(d) $\ln\left(\frac{(2x^3+1)(15-5x)}{6x^5+2x+1}\right)$

- 22. $\log\left(\frac{a^4b^7}{c^5}\right) =$ (a) $\log(a^4) + \log(b^7) + \log(c^5)$ (b) $4\log a + 7\log b - 5\log c$ (c) $28\log ab - 5\log c$
 - (d) $\frac{28}{5} (\log a + \log b \log c)$
 - (e) None of the above

23. Simplify the following expression:
$$\ln\left(\frac{\sqrt{x^2+1}(x^3-4)}{(3x-7)^2}\right)$$
.

(a)
$$\frac{1}{2}\ln(x^2+1) + \ln(x^3+4) - 2\ln(3x-7)$$

(b) $\ln\left(\frac{1}{2}(x^2+1)\right) + \ln(x^3+4) - 2\ln(3x-7)$
(c) $\ln(x^2+1)\ln(x^3+4)\ln(3x-7)$
(d) $\ln[(x^2+1)(x^3+4)(3x-7)]$

- 24. 25 rabbits are introduced to an island, where they quickly reproduce and the rabbit population grows according to an exponential model $P(t) = P_0 e^{kt}$ so that the population doubles every four months. If t is in months, what is the value of the continuous growth rate k?
 - (a) $k = \frac{1}{2} \ln 4$ (b) $k = \frac{1}{4} \ln 2$ (c) $k = \frac{1}{50} \ln \frac{4}{25}$ (d) $k = \frac{4}{25} \ln \frac{1}{50}$
 - (e) None of the above
- 25. Simplify $(\log_{16} 4) \left(\log_3 \frac{1}{9} \right)$.

- (a) $\frac{16}{3}$ (b) $\frac{4}{9}$ (c) 1 (d) -1