Classroom Voting Questions: Precalculus

Logarithmic Functions

1. A logarithmic function of the form $f(x) = \log_a x$ will always pass through the point $(1, 0)$.

 (a) True, and I am very confident.
 (b) True, but I am not very confident.
 (c) False, but I am not very confident.
 (d) False, and I am very confident.

2. Which is a graph of $y = \ln x$?

3. The graph below could be that of
4. Which equation matches this graph?

(a) $y = \ln x + \frac{1}{2}$
(b) $y = \ln x - \frac{1}{2}$
(c) $y = \ln (x + \frac{1}{2})$
(d) $y = \ln (x - \frac{1}{2})$

5. Which equation matches this graph?

(a) $y = b^x$ with $b > 1$
(b) $y = b^x$ with $0 < b < 1$
(c) $y = \log_b x$ with $b > 1$
(d) $y = \log_b x$ with $0 < b < 1$
(a) \(y = b^x \) with \(b > 1 \)
(b) \(y = b^x \) with \(0 < b < 1 \)
(c) \(y = \log_b x \) with \(b > 1 \)
(d) \(y = \log_b x \) with \(0 < b < 1 \)

6. Which of the following is a graph of \(y = \log_2 x \)?

7. Which of the following is a graph of \(y = \log_{\frac{1}{2}} x \)?
8. Which of the following functions have vertical asymptotes of $x = 3$?

(a) $y = \ln\left(\frac{x}{3}\right)$
(b) $y = \ln(x - 3)$
(c) $y = \ln(x + 3)$
(d) $y = 3 \ln x$

9. $\log\left(\frac{M - N}{M + N}\right) =$

(a) $2 \log M$
(b) $2 \log N$
(c) $-2 \log N$
(d) $\log(M - N) - \log(M + N)$

10. If $\log_{10}(x - a) = n$, then $x =$

(a) $10^{a + n}$
(b) $a + 10^n$
(c) $n + 10^a$
(d) $n + a^{10}$

11. What is the exponential form of $\log_r m = j$?

(a) $r^j = m$
(b) $j^r = m$
(c) $m^j = r$
(d) $r^m = j$

12. What is the logarithmic form of $k^p = d$?
(a) \(\log_d k = p \)
(b) \(\log_k d = p \)
(c) \(\log_p d = p \)
(d) \(\log_k p = d \)

13. What is the value of \(\log_{11} 86 \)? (Calculators are allowed.)

(a) \(.4049 \)
(b) \(.5383 \)
(c) \(1.8576 \)
(d) \(-2.0564 \)

14. What is \(3 = \log_2 8 \) in exponential form?

(a) \(2^3 = 8 \)
(b) \(3^2 = 8 \)
(c) \(8^3 = 2 \)
(d) \(2^3 = 8 \)

15. What is \(k = \log_m q \) in exponential form?

(a) \(m^k = q \)
(b) \(k^q = m \)
(c) \(m^q = k \)
(d) \(q^m = k \)

16. What is \(4^2 = 16 \) in logarithmic form?

(a) \(\log_2 4 = 16 \)
(b) \(\log_4 16 = 2 \)
(c) \(\log_4 2 = 16 \)
(d) \(\log_{16} 4 = 2 \)

17. What is \(3^{-1} = \frac{1}{3} \) in logarithmic form?
(a) \(\log_3(-1) = \frac{1}{3} \)
(b) \(\log_{-\frac{1}{3}} 3 = 3 \)
(c) \(\log_{\frac{1}{3}} 3 = -1 \)
(d) \(\log_3 \frac{1}{3} = -1 \)

18. What is the inverse of the following function:

\[P = f(t) = 16 \ln(14t) \]

(a) \(f^{-1}(P) = \frac{1}{16} e^{16P} \)
(b) \(f^{-1}(P) = \frac{1}{14} e^{P/16} \)
(c) \(f^{-1}(P) = \frac{1}{14} \ln(P/16) \)
(d) \(f^{-1}(P) = \frac{\ln 16}{14} P \)

19. Solve for \(x \) if \(8y = 3e^x \).

(a) \(x = \ln 8 + \ln 3 + \ln y \)
(b) \(x = \ln 3 - \ln 8 + \ln y \)
(c) \(x = \ln 8 + \ln y - \ln 3 \)
(d) \(x = \ln 3 - \ln 8 - \ln y \)

20. Solve for \(x \) if \(y = e + 2^x \)

(a) \(x = \frac{\ln y - 1}{\ln 2} \)
(b) \(x = \frac{\ln(y - 1)}{\ln 2} \)
(c) \(x = \frac{\ln y}{\ln 2} - 1 \)
(d) \(x = \frac{\ln(y - e)}{\ln 2} \)

21. Write the following expression using a single logarithmic function:

\[\ln(2x^3 + 1) + 5 \ln(3 - x) - \ln(6x^5 + 2x + 1) \]

(a) \(\ln(-6x^5 + 2x^3 - 7x + 15) \)
(b) \(\ln[(2x^3 + 1)(15 - 5x)(-6x^5 - 2x - 1)] \)
22. \(\log \left(\frac{a^4b^7}{c^5} \right) = \)

(a) \(\log(a^4) + \log(b^7) + \log(c^5) \)
(b) \(4 \log a + 7 \log b - 5 \log c \)
(c) \(28 \log ab - 5 \log c \)
(d) \(\frac{28}{5} (\log a + \log b - \log c) \)
(e) None of the above

23. Simplify the following expression: \(\ln \left(\frac{\sqrt{x^2 + 1}(x^3 - 4)}{(3x - 7)^2} \right) \).

(a) \(\frac{1}{2} \ln(x^2 + 1) + \ln(x^3 + 4) - 2 \ln(3x - 7) \)
(b) \(\ln \left(\frac{1}{2}(x^2 + 1) \right) + \ln(x^3 + 4) - 2 \ln(3x - 7) \)
(c) \(\ln(x^2 + 1) \ln(x^3 + 4) \ln(3x - 7) \)
(d) \(\ln[(x^2 + 1)(x^3 + 4)(3x - 7)] \)

24. 25 rabbits are introduced to an island, where they quickly reproduce and the rabbit population grows according to an exponential model \(P(t) = P_0e^{kt} \) so that the population doubles every four months. If \(t \) is in months, what is the value of the continuous growth rate \(k \)?

(a) \(k = \frac{1}{2} \ln 4 \)
(b) \(k = \frac{1}{4} \ln 2 \)
(c) \(k = \frac{1}{50} \ln \frac{4}{25} \)
(d) \(k = \frac{4}{25} \ln \frac{1}{50} \)
(e) None of the above

25. Simplify \(\log_{16} 4 \left(\log_3 \frac{1}{9} \right) \).
(a) \(\frac{16}{3}\)
(b) \(\frac{4}{9}\)
(c) 1
(d) -1