MathQuest: Series

Fourier Series

- 1. Find the Fourier series on the interval $[-\pi, \pi]$ for the function y = 2x + 3.
 - (a) $2\sin x \sin 2x + \frac{2}{3}\sin 3x \frac{1}{2}\sin 4x + \cdots$
 - (b) $3 + 4\sin x 2\sin 2x + \frac{4}{3}\sin 3x \sin 4x + \cdots$
 - (c) $3 + 2\sin x \cos x + \frac{2}{3}\sin 2x \frac{1}{2}\cos 4x + \cdots$
 - (d) $3 + 2\cos x \cos 2x + \frac{2}{3}\cos 3x \frac{1}{2}\cos 4x + \cdots$
 - (e) It is not possible to create this Fourier series.
- 2. The Fourier Series for $f = x^3$ on the interval $[-\pi, \pi]$ contains
 - (a) only sines.
 - (b) only cosines.
 - (c) both sines and cosines.
 - (d) This is impossible.

3. The Fourier Series for $f = 3e^x$ on the interval $[-\pi, \pi]$ contains

- (a) only sines.
- (b) only cosines.
- (c) both sines and cosines.
- (d) This is impossible.
- 4. The figure below contains the graph of the first three terms of the Fourier series of which of the following functions?

(a)
$$f(x) = \begin{cases} 0, & -1 < x < 0 \\ 1, & 0 < x < 1 \end{cases}$$
 and $f(x+2) = f(x)$
(b) $f(x) = \begin{cases} -1, & -1 < x < 0 \\ 1, & 0 < x < 1 \end{cases}$ and $f(x+2) = f(x)$
(c) $f(x) = |x|$ on $-1 < x < 1$ and $f(x+2) = f(x)$

- 5. The figure below contains the graph of the first three terms of the Fourier series of which of the following functions?
 - (a) $f(x) = 3(x/\pi)^3$ on $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$ (b) f(x) = |x| on $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$ (c) $f(x) = \begin{cases} -3, & -\pi < x < 0\\ 3, & 0 < x < \pi \end{cases}$ and $f(x + 2\pi) = f(x)$ (d) $f(x) = \begin{cases} \pi + x, & -\pi < x < 0\\ \pi - x, & 0 < x < \pi \end{cases}$ and $f(x + 2\pi) = f(x)$
- 6. The figure below contains the graph of the first three non-zero terms of the Fourier series of which of the following functions?
 - (a) $f(x) = 3(x/\pi)^3$ on $-\pi < x < \pi$ and $f(x+2\pi) = f(x)$ (b) f(x) = |x| on $-\pi < x < \pi$ and $f(x+2\pi) = f(x)$ (c) $f(x) = \begin{cases} -3, & -\pi < x < 0\\ 3, & 0 < x < \pi \end{cases}$ and $f(x+2\pi) = f(x)$

(d)
$$f(x) = \begin{cases} \pi + x, & -\pi < x < 0 \\ \pi - x, & 0 < x < \pi \end{cases}$$
 and $f(x + 2\pi) = f(x)$