Classroom Voting Questions: Statistics

Estimating with Confidence

1. The fundamental concept underlying statistical inference is that
(a) through the use of sample data we are able to draw conclusions about a sample from which the data were drawn.
(b) through the examination of sample data we can derive appropriate conclusions about a population from which the data were drawn.
(c) when generalizing results to a sample we must make sure that the correct statistical procedure has been applied.
(d) Two of the above are true.
(e) All of the above are true.
2. A 95% confidence interval is an interval calculated from
(a) sample data that will capture the true population parameter for at least 95% of all samples randomly drawn from the same population.
(b) population data that will capture the true population parameter for at least 95% of all samples randomly drawn from the same population.
(c) sample data that will capture the true sample statistic for at least 95% of all samples randomly drawn from the same population.
(d) population data that will capture the true sample statistic for at least 95% of all samples randomly drawn from the same population.
3. A 95% confidence interval has been constructed around a sample mean of 28 . The interval is $(21,35)$. Which of the following statement(s) is true?
(a) The margin of error in the interval is 7 .
(b) 95 out of 100 confidence intervals constructed around sample means will contain the true population mean.
(c) The interval $(21,35)$ contains the true population mean.
(d) Both (a) and (b) are true.
(e) (a), (b), and (c) are true.
4. A 95% confidence interval for the mean of a population is given as $(6.85,7.61)$. Is it correct to say that there is a 95% chance that μ is between 6.85 and 7.61 ?
(a) Yes
(b) No
5. Is it correct to say the following? If the process of selecting a sample of size 30 and then computing the corresponding 95% confidence interval is repeated 100 times, 95 of the resulting intervals will include μ.
(a) Yes
(b) No
6. A 95% confidence intervals for birthweights is found to be $(6.85,7.61)$. Is it correct to say that 95% of all birth weights will be between 6.85 and 7.61 pounds?
(a) Yes
(b) No
(c) About 95% of all birth weights will be in this range.
7. Suppose that a random sample of size 60 resulted in a 90% confidence interval for the proportion of students who carry more than 2 credit cards of ($0.52,0.76$). Which of the following is a correct interpretation of the 90% confidence level?
(a) 90% of the time the population proportion will be between 0.52 and 0.76
(b) The method used to construct the interval will produce an interval that includes the value of the population proportion about 90% of the time in repeated sampling.
(c) If 100 different random samples of size 60 from this population were each used to construct a 90% confidence interval, 90 of them will contain the value population proportion.
(d) The probability that the population proportion is between 0.52 and 0.76 is 0.90 .
8. Suppose you construct a 95% confidence interval from a random sample of size $n=20$ with sample mean 100 taken from a population with unknown mean μ and known standard deviation $\sigma=10$, and the interval is fairly wide. Which of the following conditions would NOT lead to a narrower confidence interval?
(a) If you decreased your confidence level
(b) If you increased your sample size
(c) If the sample mean were smaller
(d) If the population standard deviation were smaller
9. Which is wider, an 80% confidence interval, or a 90% confidence interval with both of them made from the same set of numerical data?
(a) An 80% confidence interval is wider than a 90% confidence interval.
(b) A 90% confidence interval is wider than an 80% confidence interval.
(c) This depends on the data.
10. Each individual in a random sample of 40 cell phone users was asked how many minutes of airtime he or she used in a typical month. The data was then used to construct a 99% confidence interval for the mean monthly number of minutes of air time used. The confidence interval was (207, 293). Which of the following could be the 95% confidence interval constructed using this same sample?
(a) $(200,300)$
(b) $(218,282)$
(c) $(227,313)$
11. Suppose that for babies born in the United States, birth weight is normally distributed about some unknown mean μ with standard deviation $\sigma=1.06$ pounds. What is the minimum sample size necessary to ensure that the resulting 99% confidence interval has a width of at most 0.5 ?
(a) 70
(b) 119
(c) 120
(d) 140
