Classroom Voting Questions: Calculus II

Section 6.4 Second Fundamental Theorem of Calculus

1. If $f(x)=\int_{1}^{x} t^{4} d t$, then
(a) $f^{\prime}(x)=t^{4}$
(b) $f^{\prime}(x)=x^{4}$
(c) $f^{\prime}(x)=\frac{1}{5} x^{5}-\frac{1}{5}$
(d) $f^{\prime}(x)=x^{4}-1$
2. If $f(t)=\int_{t}^{7} \cos x d x$, then
(a) $f^{\prime}(t)=\cos t$
(b) $f^{\prime}(t)=\sin t$
(c) $f^{\prime}(t)=\sin 7-\sin t$
(d) $f^{\prime}(t)=-\cos t$
(e) $f^{\prime}(t)=-\sin t$
3. If $f(x)=\int_{2}^{x^{2}} e^{2 t} d t$, then
(a) $f^{\prime}(x)=2 x e^{2 x^{2}}$
(b) $f^{\prime}(x)=e^{2 x}$
(c) $f^{\prime}(x)=e^{2 x^{2}}$
(d) $f^{\prime}(x)=2 e^{2 x^{2}}$
(e) $f^{\prime}(x)=\frac{1}{2} e^{2 x^{2}}-\frac{1}{2} e^{8}$
4. If $f(x)=\int_{3}^{x} \cos \left(e^{\sin t}\right) d t$, what is $f^{\prime}(x)$?
(a) $f^{\prime}(x)=\cos \left(e^{\sin x}\right)-\cos \left(e^{\sin 3}\right)$
(b) $f^{\prime}(x)=\sin \left(e^{\sin x}\right)$
(c) $f^{\prime}(x)=\cos \left(e^{\sin x}\right)$
(d) $f^{\prime}(x)=\cos \left(e^{\sin t}\right)$
(e) None of the above
5. True or False: If f is continuous on the interval $[a, b]$, then $\frac{d}{d x} \int_{a}^{b} f(x) d x=f(x)$.
(a) True, and I am very confident
(b) True, but I am not very confident
(c) False, but I am not very confident
(d) False, and I am very confident
6. If f is continuous on the interval $[a, b]$, then $\frac{d}{d x} \int_{a}^{b} f(x) d x=$
(a) 0
(b) $f(b)$
(c) $f(x)$
(d) None of the above.
7. True or False: $\int_{0}^{x} \sin \left(t^{2}\right) d t$ is an antiderivative of $\sin \left(x^{2}\right)$.
(a) True, and I am very confident
(b) True, but I am not very confident
(c) False, but I am not very confident
(d) False, and I am very confident
8. The graph of function f is given below. Let $g(x)=\int_{0}^{x} f(t) d t$. Then for $0<x<2$, $g(x)$ is

(a) increasing and concave up.
(b) increasing and concave down.
(c) decreasing and concave up.
(d) decreasing and concave down.
9. The graph of function f is given below. Let $g(x)=\int_{0}^{x} f(t) d t$. Then

(a) $g(0)=0, g^{\prime}(0)=0$ and $g^{\prime}(2)=0$
(b) $g(0)=0, g^{\prime}(0)=4$ and $g^{\prime}(2)=0$
(c) $g(0)=1, g^{\prime}(0)=0$ and $g^{\prime}(2)=1$
(d) $g(0)=0, g^{\prime}(0)=0$ and $g^{\prime}(2)=1$
10. The speed of a car is given by the function $s(t)=15 t^{2}$, where t is in seconds, and s is in feet per second. If the car starts out a distance of 20 ft from the starting line, how far from the starting line will the car be at $t=4$ seconds?
(a) 240 ft
(b) 260 ft
(c) 320 ft
(d) 340 ft
(e) $6,000 \mathrm{ft}$
11. The function $g(x)$ is related to the function $f(x)$ by the equation $g(x)=\int_{3}^{x} f(t) d t$, and $g(x)$ is plotted below. Where is $f(x)$ positive?

(a) $3<x<8$
(b) $x<6$
(c) $2.5<x$
(d) $x<2.5$
