MathQuest: Differential Equations

Euler's Method and Systems of Equations

- 1. We have the system of differential equations x' = 3x 2y and $y' = 4y^2 7x$. If we know that x(0) = 2 and y(0) = 1, estimate the values of x and y at t = 0.1.
 - (a) x(0.1) = 4, y(0.1) = -10
 - (b) x(0.1) = 6, y(0.1) = -9
 - (c) x(0.1) = 2.4, y(0.1) = 0
 - (d) x(0.1) = 0.4, y(0.1) = -1
 - (e) None of the above
- 2. We have the system of differential equations x' = x(-x-2y+5) and y' = y(-x-y+10). If we know that x(4.5) = 3 and y(4.5) = 2, estimate the values of x and y at t = 4.
 - (a) x(4) = 0, y(4) = -3
 - (b) x(4) = 6, y(4) = 10
 - (c) x(4) = 6, y(4) = 7
 - (d) None of the above
- 3. We have a system of differential equations for $\frac{dx}{dt}$ and $\frac{dy}{dt}$, along with the initial conditions that x(0) = 5 and y(0) = 7. We want to know the value of these functions when t = 5. Using Euler's method and $\Delta t = 1$ we get the result that $x(5) \approx 14.2$ and $y(5) \approx 23.8$. Next, we use Euler's method again with $\Delta t = 0.5$ and find that $x(5) \approx 14.6$ and $y(5) \approx 5.3$. Finally we use $\Delta t = 0.25$, finding that $x(5) \approx 14.8$ and $y(5) \approx -3.7$. What does this mean?
 - (a) Fewer steps means fewer opportunities for error, so $(x(5), y(5)) \approx (14.2, 23.8)$.
 - (b) Smaller stepsize means smaller errors, so $(x(5), y(5)) \approx (14.8, -3.7)$.
 - (c) We have no way of knowing whether any of these estimates is anywhere close to the true values of (x(5), y(5)).
 - (d) At these step sizes we can conclude that $x(5) \approx 15$, but we can only conclude that y(5) < -3.7.
 - (e) Results like this are impossible: We must have made an error in our calculations.