MathQuest: Differential Equations

Solutions to Linear Systems

1. Consider the linear system given by

$$
\frac{d \vec{Y}}{d t}=\left[\begin{array}{cc}
2 & 3 \\
0 & -4
\end{array}\right] \vec{Y}
$$

True or False: $\vec{Y}_{1}(t)=\binom{e^{2 t}}{0}$ is a solution.
(a) True, and I am very confident
(b) True, but I am not very confident
(c) False, but I am not very confident
(d) False, and I am very confident
2. Consider the linear system $\frac{d \vec{Y}}{d t}=\left[\begin{array}{cc}2 & 3 \\ 0 & -4\end{array}\right] \vec{Y}$ with solution $\vec{Y}_{1}(t)=\binom{e^{2 t}}{0}$.

True or False: The function $k \cdot \vec{Y}_{1}(t)$ formed by multiplying $\vec{Y}_{1}(t)$ by a constant k is also a solution to the linear system.
(a) True, and I am very confident
(b) True, but I am not very confident
(c) False, but I am not very confident
(d) False, and I am very confident
3. Consider the linear system $\frac{d \vec{Y}}{d t}=\left[\begin{array}{cc}2 & 3 \\ 0 & -4\end{array}\right] \vec{Y}$. The functions $\vec{Y}_{1}(t)$ and $\vec{Y}_{2}(t)$ are solutions to the linear system.
True or False: The function $\vec{Y}_{1}(t)+\vec{Y}_{2}(t)$ formed by adding the two solutions $\vec{Y}_{1}(t)$ and $\vec{Y}_{2}(t)$ is also a solution to the linear system.
(a) True, and I am very confident
(b) True, but I am not very confident
(c) False, but I am not very confident
(d) False, and I am very confident
4. True or False: The functions $\vec{Y}_{1}(t)=\binom{\sin (t)}{\cos (t)}$ and $\vec{Y}_{2}(t)=\binom{\cos (t)}{\sin (t)}$ are linearly independent.
(a) True, and I am very confident
(b) True, but I am not very confident
(c) False, but I am not very confident
(d) False, and I am very confident
5. True or False: The functions $\vec{Y}_{1}(t)=\binom{\sin (t)}{\cos (t)}$ and $\vec{Y}_{2}(t)=\binom{-2 \sin (t)}{-2 \cos (t)}$ are linearly independent.
(a) True, and I am very confident
(b) True, but I am not very confident
(c) False, but I am not very confident
(d) False, and I am very confident
6. If we are told that the general solution to the linear homogeneous system $Y^{\prime}=A Y$ is $Y=c_{1} e^{-4 t}\left[\begin{array}{c}-2 \\ 1\end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{l}2 \\ 3\end{array}\right]$, then an equivalent form of the solution is
(a) $y_{1}=-2 c_{1} e^{-4 t}+c_{2} e^{-4 t}$ and $y_{2}=2 c_{1} e^{3 t}+3 c_{2} e^{3 t}$
(b) $y_{1}=-2 c_{1} e^{-4 t}+2 c_{2} e^{3 t}$ and $y_{2}=c_{1} e^{-4 t}+3 c_{2} e^{3 t}$
(c) $y_{1}=-2 c_{1} e^{-4 t}+c_{1} e^{-4 t}$ and $y_{2}=2 c_{2} e^{3 t}+3 c_{2} e^{3 t}$
(d) $y_{1}=-2 c_{1} e^{-4 t}+2 c_{1} e^{3 t}$ and $y_{2}=c_{2} e^{-4 t}+3 c_{2} e^{3 t}$
(e) All of the above
(f) None of the above
7. If $Y=e^{-2 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]+e^{-4 t}\left[\begin{array}{l}2 \\ 3\end{array}\right]$ is a solution to the linear homogeneous system $Y^{\prime}=A Y$, which of the following is also a solution?
(a) $Y=2 e^{-2 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$
(b) $Y=3 e^{-2 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]-4 e^{-4 t}\left[\begin{array}{l}2 \\ 3\end{array}\right]$
(c) $Y=1 / 4 e^{-4 t}\left[\begin{array}{l}2 \\ 3\end{array}\right]$
(d) All of the above
(e) None of the above
8. The eigenvalues and eigenvectors for the coefficient matrix A in the linear homogeneous system $Y^{\prime}=A Y$ are $\lambda_{1}=4$ with $v_{1}=<1,2>$ and $\lambda_{2}=-3$ with $v_{2}=<-2,1>$. What is a form of the solution?
(a) $Y=c_{1} e^{-4 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{c}-2 \\ 1\end{array}\right]$
(b) $Y=c_{1} e^{4 t}\left[\begin{array}{c}-2 \\ 1\end{array}\right]+c_{2} e^{-3 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$
(c) $Y=c_{1} e^{4 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]+c_{2} e^{-3 t}\left[\begin{array}{c}-2 \\ 1\end{array}\right]$
(d) $Y=c_{1} e^{-4 t}\left[\begin{array}{c}-2 \\ 1\end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$
9. You have a linear, homogeneous, system of differential equations with constant coefficients whose coefficient matrix A has the eigensystem: eigenvalues -5 and -2 and eigenvectors $\langle-1,2\rangle$ and $\langle-4,5\rangle$, respectively. Then a general solution to $\frac{d \vec{Y}}{d t}=A \vec{Y}$ is given by:
(a) $Y=\left[\begin{array}{c}-k_{1} e^{-5 t}+2 k_{2} e^{-2 t} \\ -4 k_{1} e^{-5 t}+5 k_{2} e^{-2 t}\end{array}\right]$
(b) $Y=\left[\begin{array}{c}-k_{1} e^{-2 t}-4 k_{2} e^{-5 t} \\ 2 k_{1} e^{-2 t}+5 k_{2} e^{-5 t}\end{array}\right]$
(c) $Y=\left[\begin{array}{c}-k_{1} e^{-5 t}-4 k_{2} e^{-2 t} \\ 2 k_{1} e^{-5 t}+5 k_{2} e^{-2 t}\end{array}\right]$
(d) $Y=\left[\begin{array}{c}-k_{1} e^{-2 t}+2 k_{2} e^{-5 t} \\ -4 k_{1} e^{-2 t}+5 k_{2} e^{-5 t}\end{array}\right]$
10. The eigenvalues and eigenvectors for the coefficient matrix A in the linear homogeneous system $Y^{\prime}=A Y$ are $\lambda_{1}=4$ with $v_{1}=<1,2>$ and $\lambda_{2}=-3$ with $v_{2}=<-2,1>$. In the long term, phase trajectories:
(a) become parallel to the vector $v_{2}=\langle-2,1\rangle$.
(b) tend towards positive infinity.
(c) become parallel to the vector $v_{1}=\langle 1,2\rangle$.
(d) tend towards 0 .
(e) None of the above
11. If the eigenvalues and eigenvectors for the coefficient matrix A in the linear homogeneous system $Y^{\prime}=A Y$ are $\lambda_{1}=-4$ with $v_{1}=<1,2>$ and $\lambda_{2}=3$ with $v_{2}=<2,3>$, is $y_{a}=e^{-4 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$ a solution?
(a) Yes, it is a solution.
(b) No, it is not a solution because it does not contain λ_{2}.
(c) No, it is not a solution because it is a vector.
(d) No, it is not a solution because of a different reason.
12. The eigenvalues and eigenvectors for the coefficient matrix A in the linear homogeneous system $Y^{\prime}=A Y$ are $\lambda_{1}=4$ with $v_{1}=<1,0>$ and $\lambda_{2}=4$ with $v_{2}=<0,1>$. What is a form of the solution?
(a) $Y=c_{1} e^{4 t}\left[\begin{array}{l}1 \\ 0\end{array}\right]+c_{2} e^{4 t}\left[\begin{array}{l}0 \\ 1\end{array}\right]$
(b) $Y=c_{1} e^{-4 t}\left[\begin{array}{l}1 \\ 0\end{array}\right]+c_{2} e^{-4 t}\left[\begin{array}{l}0 \\ 1\end{array}\right]$
(c) $Y=c_{1} e^{4 t}\left[\begin{array}{l}1 \\ 0\end{array}\right]+c_{2} t e^{4 t}\left[\begin{array}{l}0 \\ 1\end{array}\right]$
(d) $Y=c_{1} e^{-4 t}\left[\begin{array}{l}0 \\ 1\end{array}\right]+c_{2} e^{-4 t}\left[\begin{array}{l}1 \\ 0\end{array}\right]$
13. The system of differential equations $Y^{\prime}=\left[\begin{array}{cc}1 & -1 \\ 1 & 3\end{array}\right] Y$ has eigenvalue $\lambda=2$ with multiplicity 2, and all eigenvectors are multiples of $v=<1,-1>$. Testing $Y=$ $e^{2 t}\left[\begin{array}{c}1 \\ -1\end{array}\right]$, we find that
(a) Y is a solution.
(b) Y is not a solution.
14. The system of differential equations $Y^{\prime}=\left[\begin{array}{cc}1 & -1 \\ 1 & 3\end{array}\right] Y$ has eigenvalue $\lambda=2$ with multiplicity 2 , and all eigenvectors are multiples of $v=<1,-1>$. One solution to this equation is $Y=e^{2 t}\left[\begin{array}{c}1 \\ -1\end{array}\right]$. Testing $Y=t e^{2 t}\left[\begin{array}{c}1 \\ -1\end{array}\right]$, we find that
(a) $Y=t e^{2 t}\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is also a solution.
(b) $Y=t e^{2 t}\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is not a solution.
15. The eigenvalues and eigenvectors for the coefficient matrix A in the linear homogeneous system $Y^{\prime}=A Y$ are $\lambda=-4$ with multiplicity 2 , and all eigenvectors are multiples of $v=<1,-2\rangle$. What is the form of the general solution?
(a) $Y=c_{1} e^{-4 t}\left[\begin{array}{c}1 \\ -2\end{array}\right]+c_{2} t e^{-4 t}\left[\begin{array}{c}1 \\ -2\end{array}\right]$
(b) $Y=c_{1} e^{-4 t}\left[\begin{array}{c}1 \\ -2\end{array}\right]+c_{2} e^{-4 t}\left[\begin{array}{c}1 \\ -2\end{array}\right]$
(c) $Y=c_{1} e^{-4 t}\left[\begin{array}{c}1 \\ -2\end{array}\right]+c_{2}\left(t e^{-4 t}\left[\begin{array}{c}1 \\ -2\end{array}\right]+e^{-4 t}\left[\begin{array}{c}0 \\ -1\end{array}\right]\right)$

