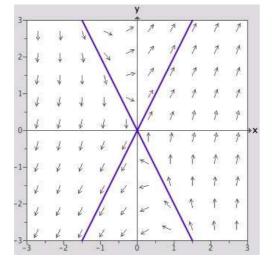
Geometry of Systems

1. The differential equation $\frac{d\vec{Y}}{dt} = A\vec{Y}$ has two straight line solutions corresponding to eigenvectors $\vec{v}_1 = \begin{bmatrix} 1\\2 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1\\-2 \end{bmatrix}$ that are shown on the direction field below. We denote the associated eigenvalues by λ_1 and λ_2 .



We can deduce that λ_1 is

- (a) positive real
- (b) negative real
- (c) zero
- (d) complex
- (e) There is not enough information

2. The differential equation $\frac{d\vec{Y}}{dt} = A\vec{Y}$ has two straight line solutions corresponding to eigenvectors $\vec{v}_1 = \begin{bmatrix} 1\\2 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1\\-2 \end{bmatrix}$ that are shown on the direction field below. We denote the associated eigenvalues by λ_1 and λ_2 .



We can deduce that λ_2 is

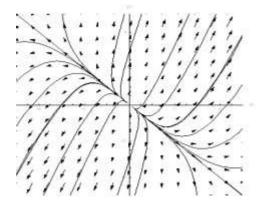
- (a) positive real
- (b) negative real
- (c) zero
- (d) complex
- (e) There is not enough information

3. The differential equation $\frac{d\vec{Y}}{dt} = A\vec{Y}$ has two straight line solutions corresponding to eigenvectors $\vec{v}_1 = \begin{bmatrix} 1\\2 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1\\-2 \end{bmatrix}$ that are shown on the direction field below.

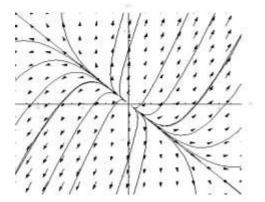
Suppose we have a solution $\vec{Y}(t)$ to this system of differential equations which satisfies initial condition $\vec{Y}(t) = (x_0, y_0)$ where the point (x_0, y_0) is not on the line through the point (1, -2). Which statement best describes the behavior of the solution as $t \to \infty$?

- (a) The solution tends towards the origin.
- (b) The solution moves away from the origin and asymptotically approaches the line through < 1, 2 >.
- (c) The solution moves away from the origin and asymptotically approaches the line through < 1, -2 >.
- (d) The solution spirals and returns to the point (x_0, y_0) .
- (e) There is not enough information.
- 4. Suppose you have a linear, homogeneous system of differential equations with constant coefficients whose coefficient matrix has the following eigensystem: eigenvalues -4 and -1 and eigenvectors < 1, 1 > and < -2, 1 > respectively. The function $\vec{Y}(t)$ is a solution to this system of differential equations which satisfies initial value $\vec{Y}(0) = (-15, 20)$. Which statement best describes the behavior of the solution as $t \to \infty$?
 - (a) The solution tends towards the origin.
 - (b) The solution moves away from the origin and asymptotically approaches the line through < 1, 1 >.
 - (c) The solution moves away from the origin and asymptotically approaches the line through < -2, 1 >.
 - (d) The solution spirals and returns to the point (-15, 20).
 - (e) There is not enough information.
- 5. Suppose we have a linear, homogeneous system of differential equations with constant coefficients who coefficient matrix has the following eigensystem: eigenvalues -4 and -1 and eigenvectors < 1, 1 > and < -2, 1 > respectively. Suppose we have a solution $\vec{Y}(t)$ which satisfies $\vec{Y}(0) = (x_0, y_0)$ where the point (x_0, y_0) is not on the line through the point (1, 1). How can we best describe the manner in which the solution $\vec{Y}(t)$ approaches the origin?
 - (a) The solution will approach the origin in the same manner as the line which goes through the point (1, 1).
 - (b) The solution will approach the origin in the same manner as the line which goes through the point (-2, 1).
 - (c) The solution will directly approach the origin in a straight line from the point (x_0, y_0) .
 - (d) The answer can vary greatly depending on what the point (x_0, y_0) is.
 - (e) The solution doesn't approach the origin.

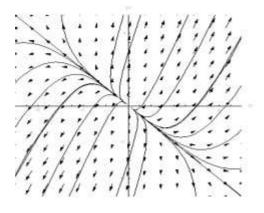
6. Using the phase portrait below for the system Y' = AY, we can deduce that the eigenvalues of the coefficient matrix A are:



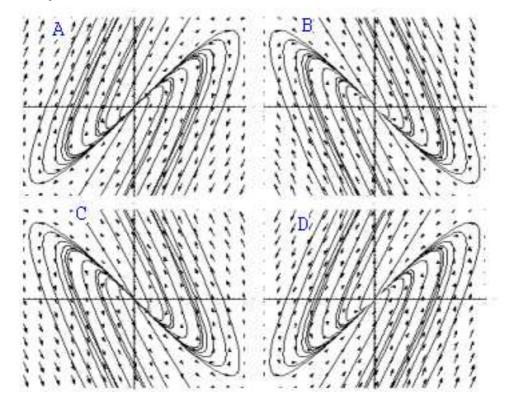
- (a) both real
- (b) both complex
- (c) one real, one complex
- (d) Not enough information is given
- 7. Using the phase portrait below for the system Y' = AY, we can deduce that the eigenvalues are:



- (a) of mixed sign
- (b) both negative
- (c) both positive
- (d) Not enough information is given
- 8. Using the phase portrait below for the system Y' = AY, we can deduce that the dominant eigenvector is:



- (a) < -1, 1 >
- (b) < 1, 3 >
- (c) < 1, -2 >
- (d) There is no dominant eigenvector because there is no vector that is being approached by all of the solution curves.
- (e) Not enough information is given
- 9. Which phase portrait below corresponds to the linear, homogeneous, system of differential equations with constant coefficients whose coefficient matrix has the following eigensystem: eigenvalues -5 and -2 and eigenvectors < -1, 2 > and < -4, 5 >, respectively?



10. Classify the equilibrium point at the origin for the system

$$\frac{d\vec{Y}}{dt} = \begin{bmatrix} 1 & 1\\ 4 & 1 \end{bmatrix} \vec{Y}.$$

(a) Sink

(c) Saddle

(d) None of the above