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Abstract:  We study how different sections voted on the same set of classroom voting 

questions in differential calculus, finding that voting patterns can be used to identify 

some of the questions that have the most pedagogic value.  We use statistics to identify 

three types of especially useful questions:  (1) To identify good discussion questions, we 

look for those which produce the greatest diversity of responses, indicating that several 

answers are regularly plausible to students.  (2) We identify questions that regularly 

provoke a common misconception, causing a majority of students to vote for one 

particular incorrect answer.  When this is revealed to the students, they are usually quite 

surprised that the majority is wrong, and they are very curious to learn what they missed, 

resulting in a powerful teachable moment.  (3) By looking for questions where the 

percentage of correct votes varies the most between classes, we can find checkpoint 

questions that provide effective formative assessment as to whether a class has mastered 

a particular concept. 
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1. INTRODUCTION 

 

Classroom voting is a teaching method where the instructor poses a multiple choice 

question to the class, then allows a few minutes for individual work and small group 

discussions, before asking all students to individually vote on the right answer, using 

either a hand-held “clicker” or nontechnologically by raising hands or holding up index 

cards of various colors (A = red, B = blue, etc.).  After the vote the instructor can select 

students and ask those students to explain what they voted for and why, making sure that 

the selected students represent the various answers.  The vote gives the instructor 

immediate feedback as to the state of the students’ understanding from each individual in 

the class.  More importantly, the vote requires every single student to play an active role, 

to grapple with some mathematical issue, to discuss it in a small group, and to register an 

opinion.  By “talking math” on a regular basis, students learn to articulate mathematical 

ideas, and to evaluate their peers’ mathematical thought processes.  

There have been numerous studies about the use of this teaching method in 

various mathematics courses including college algebra [1, 2], calculus [3, 7, 8, 10, 15, 

16], multivariable calculus [7, 14], linear algebra and differential equations [4].  All of 

these studies report how much students enjoy this teaching method and how it can create 

a positive and engaging learning environment.  Further, many report increased student 

attendance, as well as increased enthusiasm for mathematics and the development of 

more mathematics majors.  The most dramatic evidence of potential of this method 

comes from a study conducted by the Cornell GoodQuestions Project which not only 

demonstrates the effectiveness of classroom voting, but also provides important insight 
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into why this teaching method works, finding that classroom voting had a significant 

effect on student exam scores, but only if it was used to motivate students to participate 

in small-group discussions of each question [9, 13]. 

Two of us (Zullo and Cline) began using classroom voting in calculus in the fall 

of 2004, at Carroll College, a small liberal arts institution in Helena, Montana.  We drew 

questions from the Cornell GoodQuestions Project [5], from the questions that 

accompany the Hughes-Hallett et al. calculus text [11], and from questions that we 

authored ourselves.  As we became more experienced, we used classroom voting 

regularly, integrating a few questions into almost every class period.  We learned to not 

use them at the end of class for assessment, but interspersed throughout the lesson, so that 

we could teach the key points through the resulting discussions.  Further, we became very 

Socratic in the post-vote classroom discussions, calling on students by name to explain 

their thinking, and then going on to another student without confirming or denying what 

was said.  Instead, we tried to get the class to work together to figure out the issues for 

themselves, while we would act to focus the discussion on key points, and then clarify 

and generalize results after the class had developed a consensus.  We were consistently 

impressed with the power of this teaching method to engage students and create a more 

active learning environment, while at the same time students reported that voting made 

calculus class more enjoyable. 

 

2. STUDYING CLASSROOM VOTING STATISTICS 
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The research we discuss here was prompted when we began comparing how two sections 

of calculus (taught by Cline and Zullo) performed on the same questions.  We were using 

an infrared clicker system that instantly tabulated the results of each vote, listing the 

percentages of students who had voted for each option.  (Although the software can 

identify individual student’s votes, this is not a feature that we used.)  When we 

compared notes after class, we found that sometimes the results were very consistent, 

with similar percentages of students voting for the same options in both classes.  

However, other times, the two classes would perform very differently, leading us to 

discuss more specifically the reasons why this might have occurred. 

In general we found that for many questions, strong majorities of students voted 

correctly, and the questions prompted relatively little discussion.  Often the questions that 

created the most fruitful discussions resulted in more complex voting patterns.  We 

realized that past voting statistics could be used to identify some of the more productive 

voting questions, and thus could be a useful tool when selecting questions to incorporate 

into a lesson plan.  As a result, we began recording the voting statistics from each 

question, with data collection starting in the fall of 2005 and continuing to the present.  

After hearing a presentation about this project, VonEpps joined our collaboration and 

used this collection of questions in a summer 2007 session of applied calculus at the 

University of Montana, contributing the resulting statistics to the project.  All questions 

involved in this project are freely available through our website [12], and all voting 

statistics are incorporated into the teacher’s edition of these questions, which is available 

upon e-mail request. 
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Figure 1:  Each point represents one of the 101 questions on differential calculus for 

which we have data from at least five classes.  On the horizontal axis we plot the average 

percentage of students who voted correctly, and on the vertical axis we plot the standard 

deviation between the percentages of students who voted correctly in the different 

classes.  We have numbered the questions that are presented in this paper. 

 

 

We currently have a set of 192 questions on differential calculus, and we have 

past voting statistics to accompany most of these.  In this analysis, we choose to study 

only questions where we have statistics from at least five classes, which limits the data 

set to 101 questions.  For each question we calculated the average percentage of correct 
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votes across all classes, as well as the standard deviation of correct vote percentages 

across all classes.  Figure 1 shows the standard deviation of the percentage of students 

who vote correctly on each question versus the average of the percentage of students who 

voted correctly.  If we consider the entire set of questions as a whole, the average 

percentage of correct votes for each question is 67%, with an average standard deviation 

of 17%.  Further, 37% of questions had an average of more than 80% of students vote 

correctly.  This indicates that overall, students tend to do fairly well on most of these 

questions.  We also see that in general, the easier questions tend to have lower standard 

deviations, while the more difficult questions tend to have higher standard deviations.  

When we look at the right side of Figure 1, where on average the largest percentage of 

students voted correctly, we find questions that tend to be quick and easy practice 

exercises.  They may require only a minute before the students have voted, and they 

concern an essential subject, so they are often selected by the instructor, with the 

rationale that it is better for students to work examples for themselves, rather than to 

merely watch the instructor do them.  However, these questions contain little subtlety and 

do not provoke substantial discussions, which is where the real value lies.  Thus we will 

focus this paper on questions which we have found to be of substantial pedagogical 

value, which we have numbered in Figure 1.  We have grouped the questions into three 

categories: questions producing the most diverse responses (Questions 1 and 2, left 

central in Figure 1), questions which attract large majorities of students to vote for a 

particular incorrect answer which we call misconception magnets (Questions 3 and 4, 

lower left in Figure 1), and questions producing large standard deviations (Questions 5, 6, 

and 7, upper left to upper right in Figure 1). 
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3. QUESTIONS PRODUCING THE MOST DIVERSE RESPONSES 

 

The GoodQuestions study [9] indicates that the pre-vote peer-to-peer discussions are 

essential for the success of classroom voting.  If all students agree on the answer, even 

incorrectly, then we would expect that there would be less pre-vote discussion.  Instead, 

we would prefer that there be several plausible options that different students can defend.  

Thus, one way that we can use voting statistics to look for the most useful questions is to 

look for questions with the most diverse responses, where no option usually receives a 

majority.  We want to find questions where the winner of the vote receives as small a 

percentage as possible, where we define the winner as the option receiving the most 

votes, regardless of whether or not it is the correct answer.  Thus for each class that voted 

on a question, we select the percentage that voted for the winner, and take the average of 

these over all the classes.  Then we look for the questions where this average is as small 

as possible.  These appear in Figure 1 as Questions 1 and 2. 

 The question with the smallest average winner is from the beginning of the term, 

the first class period where we consider average and instantaneous velocity.  We begin 

the class with a quick warm-up question, asking what information you would need in 

order to calculate average velocity.  After the first question is resolved, we ask this 

follow-up, based on a question that accompanies the Hughes-Hallett et al. calculus text 

[11]: 
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Question 1: 

The speedometer in my car is broken. In order to find my velocity at the 

instant I hit a speed trap, I need 

i. the total distance of the trip 

ii.  the time spent traveling 

iii.  the number of stops I made during the trip 

iv. a friend with a stopwatch 

v. a working odometer 

vi. none of the above 

Select the best combination: 

a. i, ii, & iii only 

b. i & ii only 

c. iv & v only 

d. vi 

e. a combination that is not listed here 
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  a) b) c) d) e) 

Class 1 5% 20% 5% 20% 35% 

Class 2 4% 40% 36% 20% 0% 

Class 3 5% 20% 30% 15% 20% 

Class 4 0% 41% 7% 38% 14% 

Class 5 0% 23% 62% 0% 8% 

Class 6 5% 5% 26% 32% 32% 

Class 7 0% 15% 70% 15% 0% 

Avg. 3% 23% 34% 20% 16% 

 

Table 1:  Here we present the voting results from Question 1 which was used in seven 

different classes.  The column in bold indicates the correct answer. 

 

These results are graphed and labeled as data point 1 in Figure 1.  We see that on 

average only 34% of students vote correctly, so this is a regularly challenging question.  

However for this analysis we take the average of the winning percentages from each class 

(35%, 40%, 30%, 41%, 62%, 32%, and 70%) to find that the average winner gets 43% of 

the vote, which is smaller than any other question in our collection.  This statistic 

identifies it as a good discussion question, and our experience confirms this. 

 It typically takes about 2 minutes for the students to read, work through, and 

discuss this question, before roughly 3/4 of the class has registered a vote.  We call for 

the remaining students to finish up, and when the votes are in, we display a graph 

showing the class distribution.  We begin the discussion by selecting a student by name, 
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asking this person what they voted for and why, then going on to two or three other 

students, posing the same question.  At this point we try to provide no feedback to the 

students as to whether their answers are correct or incorrect.  Substantial numbers of 

students vote for all options except (a), so with this question we will hear some 

contrasting perspectives by surveying just a few students.  It is often useful to take notes 

of the key ideas, either correct ones or incorrect ones, which are presented by students, in 

order to clarify the discussion.  Later, when the discussion is resolved, we go back and 

explicitly cross out anything written on the board which is incorrect.  When a student 

defends a vote for (e), we ask what combination they would need to calculate the speed, 

and write this on the board. 

Usually a student who voted for (c), (d), or (e) will explain why (b) is incorrect in 

the course of justifying their own vote, stating that this information could only give the 

average velocity over the entire trip, rather than the instantaneous velocity.  If this doesn’t 

come up naturally, we can specifically ask one of these students why (b) wouldn’t work.  

Occasionally, a student voting for (b) will volunteer to defend this answer, pointing out 

that it would work if you were driving at a constant speed for the whole trip.  At this 

point we confirm for the class that (b) is not a good answer, because we want a method 

that would work no matter how you were driving.   

The discussion between students voting for (c) and those voting for (d) and (e) is 

more interesting.  To bring the issues out most fully, it can be useful to ask students to 

respond to each other’s arguments:  One student explains why they voted for (c), the next 

student explains why they voted for (d), and then we go back to the first student to ask 

them something like “Do you disagree with that?  What makes you think differently?”  



 12

This discussion does not usually resolve itself, because these three answers are all 

reasonable.  After students have articulated the key points, we resolve the discussion by 

stating that (c) is probably the best answer, because with an odometer and a stopwatch 

you could measure the period of time that it took to travel a short distance and calculate 

the velocity.  However we acknowledge that (d) and (e) can also be defended, because 

even with option (c) we are still calculating an average velocity, rather than a truly 

instantaneous one.  This ambiguity in the question means that we would never use it in 

this form on an exam for assessment, but it makes the question a very effective tool for 

stimulating in-class discussion. 

To build on the discussion, we point out that if we measure the average velocity 

over smaller intervals, it will become a better approximation of the true instantaneous 

velocity, which brings us to the key idea behind the derivative as a limit.   

 The question with the next lowest average winner comes from the lesson on 

second derivatives, also from [11].  This is a question that we ask at the end of the class 

period, after we have already discussed the relationship between the second derivative 

and concavity, acceleration, and worked through several other graphical questions. 

 

Question 2: 

In Star Trek: First Contact, Worf almost gets knocked into space by the 

Borg. Assume he was knocked into space and his space suit was equipped 

with thrusters. Worf fires his thrusters for 1 second, which produces a 

constant acceleration in the positive direction. In the next second he turns 

off his thrusters. In the third second he fires his thruster producing a 
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constant negative acceleration. The acceleration as a function of time is 

given in Figure 2.31. Which of the following graphs represent his position 

as a function of time? 

 

 

 

 

 

 

 

 

 

 

Figure 2:  These graphs accompany Question 2, which is part of the collection published 

in [11].  The figures show a graph of acceleration versus time, and four possible 

corresponding graphs of velocity versus time. 



 14

 

  a) b) c) d) 

Class 1 45% 0% 35% 20% 

Class 2 13% 0% 48% 39% 

Class 3 40% 5% 40% 15% 

Class 4 48% 7% 7% 37% 

Class 5 35% 0% 41% 18% 

Class 6 23% 0% 54% 23% 

Avg. 34% 2% 38% 25% 

Table 2:  Here we present the voting results from Question 2.  The column in bold 

indicates the correct answer. 

 

This question takes between 2 and 4 minutes for most students to register a vote.  

Here we see that in only one of these classes did any option receive a majority.  

Significant numbers of students regularly vote for (a), (c), and (d), with the average 

winner receiving 44% (averaging the largest percentage from each of the six classes, 

45%, 48%, 40%, 48%, 41%, and 54%).  Again, this broad distribution means that when 

we call on three or four students, we will almost certainly hear some contrasting 

perspectives.  If we have a substantial number of students voting for a particular option, 

but we don’t happen to call on any students who voted this way, we might ask for 

volunteers:  “Could someone who voted for (d) explain this choice?” 

Students who vote for (c) or (d) will usually explain why answer (a) indicates 

confusion between the first derivative and the second, without any prompting.  This is 
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often the first issue addressed in the discussion, and we can confirm that (a) is incorrect.  

This leaves us with students willing to defend (c) and (d).  This discussion often resolves 

naturally, when a student voting for (c) points out that a zero second derivative between t 

= 1 and t = 2, means that the function should have no concavity and be linear on this 

interval.  Similarly, students may point out that (d) shows positive concavity for t > 2, 

when the acceleration should be negative.  If these do not come up clearly, we can 

directly ask a student who voted for (c) why they think option (d) is wrong, and usually 

these points will come out. 

It is interesting that few if any students ever vote for (b), which shows zero 

velocity for 1 < t < 2.  This is probably because the concavities are reversed with this 

graph showing negative acceleration in the first interval, and positive acceleration in the 

third.  It might be interesting to modify this option, giving it the right concavities, and 

then add option (e) “More than one of the above are possible” as the correct answer, to 

emphasize that we can have a nonzero first derivative while the second derivative is zero.   

 

4. MISCONCEPTION MAGNETS 

 

Another way in which classroom voting can produce a very effective learning 

environment is when the question provokes a majority of students to vote for one 

particular incorrect answer.  When this is revealed to the students, they are usually quite 

surprised that the majority is wrong, and they are very curious to learn what they missed, 

resulting in a powerful teachable moment.  We can identify these misconception magnets 

by taking each question, identifying the most popular incorrect answer, and calculating 
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the average percentage of students voting for this option.  We can then look for the 

questions where the largest average percentage of students voted for the most popular 

incorrect answer.  When we search our data in this way, we find that the two best 

misconception magnets are also quite apparent in Figure 1:  These are the two questions 

in the lower left of the plot, questions 3 and 4, which have the smallest average 

percentage of correct votes as well as very low standard deviations.  

Question 3 is from the class period on derivatives of trigonometric functions, 

which follows the period where students learned the product rule.  This particular 

question is generally asked late in the period, after the students have worked through 

other voting questions, requiring them to take derivatives of simpler trigonometrically 

based functions, such as xxf sin3)( −= , or asking for the 30th derivative of xcos . 

 

Question 3: 

If xxxf cossin)( = , then =′ )(xf  

 a. x2sin21−  

 b. 1cos2 2 −x  

 c. x2cos  

 d. All of the above 

 e. None of the above 

 

 We have statistics from seven classes which voted on this question, ranging from 

fall 2005, to fall 2007, which show that on average only 12% of students voted correctly, 
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with a standard deviation of 8.3%.  Also, the incorrect votes overwhelmingly favor option 

(e). 

 

  a) b) c) d) e) 

Class 1 10% 0% 10% 10% 70% 

Class 2 40% 32% 8% 4% 16% 

Class 3 3% 6% 6% 15% 70% 

Class 4 4% 0% 11% 0% 85% 

Class 5 0% 22% 0% 17% 61% 

Class 6 0% 20% 0% 25% 55% 

Class 7 0% 43% 0% 13% 44% 

Avg. 8% 18% 5% 12% 57% 

Table 3:  Here we present the voting results from Question 3.  The column in bold 

indicates the correct answer. 

 

 If this question was being used for assessment, these results would be a disaster.  

However, when used for teaching, this is an excellent question.  Most students apply the 

product rule in a straight-forward manner, getting xxxf 22 sincos)( −=′ , which is not 

among the options, and so a majority usually votes for (e).  The post-vote discussion 

often begins with a student explaining this reasoning, but then another student objects 

that a calculator has indicated option (a) or (b).  At this point the instructor may ask other 

students to try this out on their calculators and confirm whether this is right.  This often 

produces considerable confusion among the students, as they tend to think that both 
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expressions can’t be right.  The instructor may then graph the functions or help the 

students to algebraically work out the equivalence of these functions.  (a) and (b) are not 

difficult, as they both follow from the identity 1cossin 22 =+ xx .  As a whole, this 

question serves as an important reminder that there may be many ways to analytically 

represent a function, especially if it is composed of trigonometric functions.   

 The other of these misconception magnets is from the Cornell GoodQuestions 

project, and is on the topic of the Mean Value Theorem (MVT), which says that if f is a 

continuous and differentiable function on some interval, then at some point within that 

interval the derivative of the function must be equal to the average slope over the entire 

interval.  A theorem like this can often be very abstract and difficult for students to 

interpret, so we give them a tangible scenario, where they already have substantial 

intuition: 

 

Question 4: 

Two racers start a race at the same moment and finish in a tie. Which of the 

following must be true? 

 

a.  At some point during the race the two racers were not tied. 

b.  The racers' speeds at the end of the race must have been exactly the 

same. 

c.  The racers must have had the same speed at exactly the same time at 

some point in the race. 
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d.  The racers had to have the same speed at some moment, but not 

necessarily at exactly the same time. 

 

 The statistics on this question show only an average of 15% voting correctly with 

a standard deviation of 6.0%, while on average 81% chose answer (d).  Students often 

learn to be cautious about our use of definitive language in mathematics, which is 

generally a good thing, but as a result they tend to vote for weaker options like (d), afraid 

that there may be unseen counterexamples to more strongly worded options like (c).   

 

 

  a) b) c) d) 

Class 1 0% 10% 25% 65% 

Class 2 0% 0% 8% 92% 

Class 3 5% 5% 10% 80% 

Class 4 4% 0% 14% 82% 

Class 5 0% 0% 17% 83% 

Class 6 0% 0% 14% 86% 

Avg. 2% 3% 15% 81% 

Table 4:  Here we present the voting results from Question 4.  The column in bold 

indicates the correct answer. 
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In the post-vote discussions of this question it is usually clear that while most 

students have some intuition, they cannot see how to apply the MVT.  Thus, after a few 

opinions have been shared, it can be helpful to directly ask the students how we can use 

the MVT to analyze this scenario.  This is usually quite a puzzle, because the MVT 

concerns a single function, its average slope and its derivative, while here we have two 

functions, each giving the position of one of the racers, and we’re interested in when 

these two derivatives are equal, not when they are equal to an average slope.  It may be 

necessary for the instructor to suggest that our function could be the difference between 

the two runner’s positions.  We can then sketch out several possible graphs for this 

scenario, showing what happens if the racers stay tied the whole time, or if different 

racers lead at different times.  Next, we may ask students to consider the meaning of the 

derivative of this difference function.  What does it mean when the slope of this function 

is positive, negative, or zero?  From this point, it is a little more straight-forward, and 

students can see that the average slope of the difference function must be zero, because 

the racers begin and end in a tie, and further that if the derivative of the difference 

function is zero, this means that the racers are going at the same speed, and so the MVT 

tells us that (c) must be true. 

This question may require fifteen minutes of classroom discussion or more, but in 

the process we can work through the implications of the MVT in great detail.  This 

question can be a powerful tool to motivate the class, to pique student interest, and to 

focus the resulting discussion.  Questions like this are very potent, because they connect 

theoretical ideas with tangible situations, drawing out the students’ intuitive ideas and 

linking them to the general mathematical principles. 
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5. LARGE STANDARD DEVIATIONS 

 

The questions along the top of Figure 1 also stand out.  Questions with large standard 

deviations sometimes indicate good checkpoint questions,  where some classes do very 

well, while others do very poorly, allowing the instructor to quickly assess whether the 

class has mastered a particular concept.  However, other questions with large standard 

deviations instead may indicate that a question has been used in very different ways by 

different instructors. 

 For example, the following question comes from the beginning of the lesson 

where we show that the derivative of )ln(x   is 
x

1
: 

 

Question 5: 

( )1ln 2 +t
dt

d
 is 

  a.  ( )1ln2 2 +tt  

  b.  
1

2
2 +t

t
 

  c.  ( )1ln 2 +t

dt
 

  d.  
1

1
2 +t
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  a) b) c) d) 

Class 1 0% 84% 0% 16% 

Class 2 10% 80% 0% 10% 

Class 3 4% 80% 0% 16% 

Class 4 0% 88% 0% 12% 

Class 5 0% 0% 50% 50% 

Avg. 3% 66% 10% 21% 

Table 5:  Here we present the voting results from Question 5.  The column in bold 

indicates the correct answer. 

 

We see that the question is remarkably consistent, with the exception of the results in 

Class 5, which is what gives these results the largest standard deviation in our data set 

(STD = 37%). The first four classes used this as a simple practice question, to apply the 

chain rule and the natural log rule in a straight-forward context.  However, in class 5, the 

instructor used the question in a very different way:  This question was asked to open the 

period, before the natural log rule had been presented in class, with the expectation that 

students should have read this section in the text before coming to class.  The students 

referred to their text in class, worked together, and settled for options (c) and (d).  No one 

voted correctly, but the post-vote discussion revealed that this was a very effective 

teaching moment and, when prompted, the students quickly realized that they needed to 

apply the chain rule in conjunction with the natural log rule. 

 The question with the next largest standard deviation (from [11]) does indeed 

appear to serve as an effective checkpoint question: 
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Question 6: 

Let xbaxxf /)( += .  Suppose a and b are positive. What happens to )(xf  as a 

increases? 

  a. The critical points move further apart. 

  b. The critical points move closer together. 

 

  a) b) 

Class 1 4% 96% 

Class 2 0% 100% 

Class 3 82% 18% 

Class 4 13% 87% 

Class 5 40% 60% 

Avg. 28% 72% 

Table 6:  Here we present the voting results from Question 6.  The column in bold 

indicates the correct answer. 

 

Although an average of 72% of students vote correctly, we see that the percentage of 

students voting correctly varies from 18% to 100% with a standard deviation of 34%.  

Most of our students attempt this question with optimization and the use of parameters, 

which are two of the most challenging topics in differential calculus (although it could 

also be analyzed geometrically).  Students must take a derivative, set it equal to zero, 
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solve for the critical points, and interpret how this expression will be affected by changes 

in a parameter, thus there are several places where errors can be made which would cause 

students to get the incorrect result.  Thus the question gives the instructor feedback as to 

whether students can perform and synthesize these steps.  

 Another good checkpoint question is from the beginning of the class period where 

we first learn to use derivatives for optimization: 

 

Question 7: 

True or False:  A local maximum of f only occurs at a point where 0)( =′ xf . 

 

  T) F) 

Class 1 90% 10% 

Class 2 40% 60% 

Class 3 88% 12% 

Class 4 80% 20% 

Class 5 75% 25% 

Class 6 53% 47% 

Class 7 0% 100% 

Avg. 61% 39% 

Table 7:  Here we present the voting results from Question 7.  The column in bold 

indicates the correct answer. 
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On average only 39% of students get this one right, with a standard deviation of 33%.  

The votes on this question are probably so diverse because the question hinges on 

whether students recognize that we may have a maximum at a point where the derivative 

is undefined.  Either this has already come up in class discussions and been absorbed by 

the students or it hasn’t. 

 

6. CONCLUSIONS 

 

Classroom voting requires a substantial amount of class time, with the votes and 

discussions often occupying more than half of a class period.  However, this is not time 

lost.  For the past several years we have covered exactly the same material in our calculus 

classes and given the same types of exams that we did before we used classroom voting.  

We did not eliminate any topics from our courses to make room for voting.  While in the 

past we covered the topics through traditional lecture, by working examples on the board, 

and by asking questions of the class as a whole, more recently we have learned to use the 

voting to bring up these same issues.  By posing a few carefully chosen multiple-choice 

questions and giving students the opportunity to work them out individually and then 

discuss them in small groups, the students become more invested in the lesson, and more 

curious to see how the particular issues are resolved.  Thus voting tends to make the class 

more focused, making class time more productive.  Further, we tend to do fewer 

examples on the board, using voting to make the students to work the examples out for 

themselves.  As a result, the course can go at the same pace, teaching the same topics in a 

more student-focused way.  
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We have found that studying past voting statistics can be a useful method for 

identifying productive voting questions when preparing a lesson plan.  Class time is 

precious, and each voting question usually takes between 5 and 10 minutes from 

beginning to end.  Thus it is particularly important to choose questions that will provoke 

the richest discussions and raise significant issues, seriously engaging the students before 

the vote, and result in a post-vote discussion that will address key goals of the class 

period.  Our experience is that generally, the questions where majorities of students 

regularly vote incorrectly are more likely to produce the most valuable classroom 

discussions.  When preparing a lesson plan, we review all of the relevant questions 

available, selecting those that focus on the central topics and giving preference to 

questions which regularly produce voting patterns that indicate a particularly diverse set 

of responses, a question which effectively provokes a common misconception, or one that 

may serve as an effective checkpoint question for this material. 

As a whole, we have found that when used thoughtfully, classroom voting can 

have several dramatic and positive effects.  It prevents the students from passively 

observing the class, and instead requires each person to engage in the material and to 

actively participate in small group discussions.  It provides immediate feedback to both 

the instructor and the students as to the students’ level of understanding.  Voting is a 

powerful springboard for creating class-wide discussions where students are highly 

involved, because they have formed an opinion about the current issue and they have 

voted their opinion.  This gives students a real stake in the discussion, which increases 

their level of engagement enormously.  Further, when classroom voting is used in this 

way, we find that students have more fun, they enjoy class more, and strongly prefer this 
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teaching method, with our post-course surveys indicating that 74% would choose to take 

a section of a mathematics course using voting rather than one without [17].  By using 

classroom voting, we create an environment where our students find enjoyment and take 

pleasure in working through substantial mathematics, as a result of which our students 

learn in a deep and effective way. 
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