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ADDRESSING COMMON STUDENT ERRORS WITH  

CLASSROOM VOTING IN MULTIVARIABLE CALCULUS 

 

Abstract: One technique for identifying and addressing common student errors is the 

method of classroom voting, in which the instructor presents a multiple choice question 

to the class, and after a few minutes for consideration and small group discussion, each 

student votes on the correct answer, often using a hand-held electronic clicker.  If a large 

number of students have voted for one particular incorrect answer, the instructor can 

recognize and address the issue.  In order to identify multiple choice questions which are 

especially effective at provoking common errors, we recorded the percentages of students 

voting for each option on each question used in eleven sections of multivariable calculus, 

taught by four instructors, at two small liberal arts institutions, all drawing from the same 

collection of 317 classroom voting questions, over the course of five years, during which 

we recorded the results of 1,038 class votes.  We found six questions in which, on 

average, more than 50% of each class voted for the same incorrect answer.  Here we 

present these six questions and we discuss how we used them in the classroom in order to 

promote discussion and student learning. 
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1 INTRODUCTION 

Classroom voting, sometimes called “Peer Instruction,” has developed a strong 

record of success as a teaching method in the university classroom throughout the STEM 

disciplines (see e.g. [2, 6, 8, 12, 13]).  In this pedagogy, the instructor presents a multiple-

choice question to the class, gives the students a few minutes for consideration and small 

group discussion, and then calls on them to vote on the correct answer, perhaps with a 

hand-held electronic clicker or perhaps through some more basic method, such as having 

students raise hands.  After the vote, the instructor can guide a class-wide discussion of 

the question, asking students to explain their votes, and helping them to work out the 

correct answer.  This teaching method requires all the students to participate in a small 

group discussion, to form an opinion, and to register this opinion.  The votes themselves 

further serve as a formative assessment, giving the instructor an indication of student 

understanding, and they provide feedback to the students as well, when the correct 

answer is discovered through the post-vote discussion.  There have been many positive 

reports on the effects of classroom voting in the collegiate mathematics classroom, 

indicating that this method can be successful in engaging the students with important 

mathematical ideas (see e.g. [1, 7]), that it can improve student exam scores [9], and that 

students report enjoying the process and prefer this interactive teaching method to 

traditional lectures [15]. 

One way in which classroom voting can be particularly effective is when a 

question provokes a majority of students to vote for the same incorrect answer.  If this 

were to happen on a test, or other summative assessment, such a result would be 

concerning.  However, as noted by Bruff [2], in a classroom voting context, this can 
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create an excellent learning environment, which he calls a “time for telling.”  The 

students anticipate that the majority will be correct, and thus they are usually surprised 

and intrigued when they find that the class as a whole is in error.  Because the students 

have invested themselves in the learning process, they pay especially close attention to 

the resolution of the problem at hand.   

However, it is often quite difficult to write a question which will successfully 

have this effect.  Occasionally the instructor knows of a particular misconception or error 

that many students share, and knows exactly how to provoke this issue with a multiple 

choice question.  However, more often, it is challenging to write a really good question 

which will get a majority of students to vote for a particular incorrect answer.  Students 

are often distracted by issues which the instructor did not anticipate, so that the question 

does not have the focus that was intended.  At the same time we have seen questions 

effectively provoke common errors in class, even though they were not written for this 

specific purpose.  Often, the only way to identify good common-error questions is to test 

the questions out in a variety of classes, so that the voting results can indicate which 

questions succeeded in this goal, a process which we first applied on the topic of 

differential calculus [3], where we called these questions “misconception magnets.” 

The purpose of the study presented here is to isolate a group of voting questions 

which are effective at provoking students to make common errors in multivariable 

calculus, and to discuss how these questions can be used in the classroom as a powerful 

platform for addressing those errors.  To that end, we recorded the percentages of 

students voting for each option on each question used in eleven sections of this class 

taught over the course of five years. 
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2 CLASSROOM VOTING IN MULTIVARIABLE CALCULUS 

We first used classroom voting in multivariable calculus during the fall of 2004 at 

Carroll College, in Helena, Montana.  Carroll is a small liberal arts college of 

approximately 1,400 students, where multivariable calculus is required of all 

mathematics, engineering, and chemistry majors, which are the principal constituents of 

these classes.  A typical section enrolls about 15 to 25 students.  The voting questions that 

we used were drawn from several sources, including the collection of “ConcepTests” 

written to accompany the Hughes-Hallett et al. calculus text [5], which was the main text 

for the course, as well as a collection of 89 questions written by Mark Schlatter [11], and 

a number of questions that we wrote ourselves.   

When we introduced voting, we were consistently impressed not only with the 

power of this teaching method to create an active learning environment, but also with 

how positively and enthusiastically the students reacted.  We used voting several times in 

almost every 50 minute class period, which consumed a substantial quantity of class time, 

often about five minutes total for each question’s pre-vote consideration and discussion, 

the vote itself, and the post-vote class-wide discussion.  However, we learned to use 

voting to get the students to work through examples that we would otherwise have done 

on the board.  Although, using a less interactive teaching method, we would have been 

able to do a wider range of examples for the class, we decided that the level of student 

engagement in the examples that we did pursue more than made up for this reduction. 

As we taught multivariable calculus with classroom voting, we also learned that it 

was helpful if the votes and discussion were not a summative assessment for the 
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instructor’s benefit, so that the votes did not constitute any part of the students’ grades.  

Instead, we used the voting and discussion to teach the material, and so they formed an 

essential part of each lesson.  There were many key ideas which we presented principally 

through the classroom voting process, thus students could see that the classroom voting 

pedagogy was for their benefit, to help them learn the material.  Several studies have 

documented that the success of voting can hinge on whether students recognize that the 

voting is being conducted principally as a teaching tool, for their benefit, rather than as a 

time saving assessment technique for the instructor [4, 14]. 

Beginning in fall 2006, two of us (KC and MP) began recording the percentages 

of students voting for each option on the questions that we selected, in order to facilitate 

comparison between our sections, and to provide some evaluation of the effectiveness of 

the questions that we were using.  We gathered this data for four years, then during the 

fifth year, we expanded the study, including a section taught at Carroll College by 

another instructor (HZ), as well as a section taught by a fourth instructor (AS) at Hood 

College, another liberal arts college.  This permitted us to examine whether our voting 

results were dependent on the two instructors involved, or whether these questions would 

provoke similar results in other, similarly structured classes. 

As we see in Table 1, the data analyzed here are from eleven sections of 

multivariable calculus, taught by four instructors, at two institutions, over the course of 

five years, all drawing from the same collection of classroom voting questions, including 

results from a total of 1,038 class votes.  At the beginning of this study, our collection 

contained approximately 250 classroom voting questions, but we have been steadily 

adding to the collection, and it currently contains a total of 317 questions.  A “student’s 
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edition” of this collection is freely available on the web (http://mathquest.carroll.edu), 

and a “teacher’s edition” with past voting results, solutions, and commentary is available 

with an e-mail request to the authors. 

 

3 IDENTIFYING COMMON-ERROR QUESTIONS FROM VOTING RESULTS  
 

To identify questions which consistently provoke a majority of students to vote 

for a particular incorrect option, we limited our analysis to questions for which we had 

results from at least five of the eleven sections, and which included data from at least two 

different instructors.  We found that 81 of the 317 questions met these criteria. 

We then computed the mean percentage of students voting for each option.  We 

considered each section to be a single data point, so we did not weight this mean 

according the enrollment of each section.  Instead we computed the arithmetic mean of 

the percentage of students voting for each option across each section reporting data for 

each question.  In Figure 1, for each of these 81 questions, we plot the standard deviation 

of the percentage of students voting correctly versus the mean percentage of students 

voting correctly.  This graph shows that a majority of the students voted correctly on 

most of the questions used.  This is to be expected, as instructors will only pose a 

question if they expect that the students have the necessary preparation to answer it 

correctly.  As a result, when the majority of students votes incorrectly, it is surprising and 

interesting to the students. 

Next, we ranked the 81 questions, based on the average percentage of students 

voting for the most popular incorrect option, finding only six questions where, on 

average, a majority of students voted for the same incorrect answer.  This tells us that it is 
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quite rare to find a question which regularly provokes the majority of a class to vote for 

the same incorrect option, indicating that creating and identifying questions of this nature 

is a substantial challenge.  These six questions are numbered in Figure 1, and presented in 

Figures 2 – 7, with complete voting results presented in Tables 2 – 7.   

In these tables, note that the section numbers listed in the last columns of Tables 2 

– 7 correspond to the section numbers listed in the first column of Table 1.  Thus, for 

example, the first voting result presented in Table 2, stating that 21% voted for (a) and 

79% voted for (b), comes from section 2.  When we look at Table 1, we see that section 2 

was taught in the fall of 2006 and enrolled 20 students. 

 

4 THE SIX COMMON-ERROR QUESTIONS 

In Question 1 (Figure 2) students know that the gradient vector is perpendicular to 

something, but they erroneously think that this perpendicularity applies to the surface plot 

of the function, and therefore answer that this statement is true.  This question provides a 

useful opportunity to encourage students to classify the types of mathematical objects we 

are considering.  When they realize that here the gradient is a two dimensional vector, 

and that the surface resides in three dimensions, it becomes clear that these will not 

necessarily be perpendicular.  Table 2 presents the voting results, and although they 

include data from all four instructors, they show the most consistent voting patterns of the 

six questions presented, with smaller standard deviations than any of the others, 

indicating that this is a particularly robust error. 

In Question 2 (Figure 3) the student error comes not from calculus, but from a 

failure to note how the variables are defined.  In this business scenario, the total value of 
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the company’s equipment V is defined in thousands of dollars, so when the equipment 

increases in value by $20,000, dV = 20.  However, most students instead use dV = 

20,000, leading to answer (a).  It is certainly a valuable lesson to pay careful attention to 

how the variables are defined.  As we see in Table 3, this question produced remarkably 

consistent results from three different instructors, probably because the common error 

being provoked here is not directly relevant to the topic being taught.  Thus it is not 

particularly important whether the instructor poses this question early or late in the 

lesson, after many examples have been performed.  In only one of the seven sections did 

a majority vote correctly.  Students may initially see this as a “trick question,” and so we 

have found that is it important for the instructor to provide positive guidance to the 

students, reminding them why it is important to think carefully about how variables are 

defined whenever we use mathematics in the real world. 

Question 3 (Figure 4) asks students to change the order of integration of a double 

integral.  To do this, they must first determine the geometrical region described by the 

limits of the given integral, and then recognize how to describe this region with the 

integrals posed in the opposite order.  It is interesting to observe in Table 4, that in four of 

the sections, a strong majority votes erroneously for (d), while in the two other sections, 

more than 90% of both classes vote correctly, leaving only a small minority to vote for 

(d).  As a result the standard deviation of the percentages of the classes voting for (d) is 

44%, which is larger than any of the other six questions presented here.  

Note particularly the difference between section 5 and section 6, which were both 

taught by the same instructor during the same semester in consecutive periods.  In section 

5, the question was only posed at the end of the lesson, after we had carefully discussed a 
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process for changing the order of integration, and thus the question served to confirm the 

students’ comprehension.  In section 6, the instructor used the question at the beginning 

of the lesson, to introduce the subject.  After the vote, the students were asked to sketch 

the regions of integration represented by the limits of the initial integral, and by answer 

(d).  This produced a dramatic moment when the class realized that (d) was in error, 

which served to motivate a careful discussion how to change the order of integration.  In 

section 10, this question was used after the students had already been working with 

integrals for a couple of days, so the class was no longer at an introductory level with this 

material.     

Together, these results indicate that student understanding of this topic is fairly 

binary.  Either students understand that changing the order of integration requires careful 

consideration, and probably a sketch of the region involved, or they erroneously think 

that this can be done on a more intuitional level.   

Question 4 (Figure 5) is challenging because students fail to consider that an 

integral is specified by both the region of integration as well as the integrand function, 

which in this case is ���, �, �� = �.  They vote that the given triple integral is equal to (a) 

the volume of a cube of side 1, because the limits of integration do indeed specify this 

region.  However, because the integrand is not simply 1, this integral has a different 

meaning.  Table 5 shows that we had four sections where a majority voted incorrectly for 

(a) but two sections where a majority voted correctly for (d), and another where the class 

was equally divided between three options.  In the post-vote discussions, we found that 

students rarely computed the actual value of the integral, and were sometimes surprised 

when it was pointed out that knowing this value could be relevant to the question.   
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Many students struggle with the idea that there are an infinite number of ways to 

parameterize any curve, and find it difficult to recognize different parameterizations for 

the same curve.  Question 5 (Figure 6) asks students to identify which of the given 

options is not a parameterization of the the entire curve � = �	.  Most students work 

through this in a superficial way, simply looking for the option which appears most 

different from the others, thus choosing (d), because this is the only option which 

includes coefficients other than one.  To get students to consider the problem in more 

depth after a vote, it can be helpful to explicitly prompt students to try specific values for 

the parameter t, asking for the points that result, and whether or not these point are on the 

curve � = �	.   

Table 6 shows that this question prompted five of the seven sections to vote for 

the same incorrect answer, leaving section 4 where a majority of students voted correctly, 

and section 7 which was equally divided between (b) and (d).  In section 4, the question 

was asked after students had worked through a worksheet introducing basic 

parameterizations, thus the question simply confirmed what the students already knew, 

rather than providing an opportunity to surprise the students and to produce a classroom 

environment in which the students were ready to learn. 

To really understand what an integral means, students should be able to 

distinguish when a nontrivial integration is required, and when a calculation can be done 

with ordinary multiplication.  Thus Question 6 (Figure 7) asks them which flux 

calculation requires more than ordinary multiplication.  The most common error is to 

select (d), which includes a slightly more complicated vector field, involving r2.  

However, the real issue is not how complicated the vector field is, but whether the 
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component producing flux through the surface is a constant throughout that surface, or 

whether it varies, and thus requires a nontrivial integral.  In option (d) it is the 
̂ 

component which produces a flux out of the sides of the cylinder, and the magnitude of 

this is given by r2.  But r = r2 = 1 on the sides of the cylinder, and so ordinary 

multiplication will suffice to compute the flux.   

Table 7 shows that this is a question which provoked very different results from 

the seven sections which voted it, even though only two instructors taught all of these 

sections.  Indeed, sections 6 and 7 voted very differently, yet they were taught by the 

same instructor.  Although the question is not reliable at producing a majority voting for 

this incorrect option, the question may be particularly valuable in providing feedback to 

the instructor, serving as a checkpoint to indicate whether this is a topic that students 

understand. 

On three of these six questions we have only votes from classes taught by the 

original two instructors in the study, while the other three (Questions 1, 2, and 3) have 

votes from, the instructors brought in during the final year, teaching sections 10 and 11.  

We do not find any clear difference between the results from the various instructors.  

Section 10’s vote on Question 2 is very consistent with the previous votes, and section 

10’s and 11’s votes on Question 1 are similarly consistent.  Question 3’s common error 

was successfully navigated by section 10, but also by section 5.  As a whole this suggests 

that the voting results studied here are not strongly dependent on the two instructors who 

began the study, but probably have a more general validity. 
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5 DISCUSSION AND CONCLUSIONS 

We have found that in guiding a post-vote classroom discussion, these common-

error questions allow the instructor to be particularly Socratic, calling on the students to 

explain and defend the options for which they voted, without offering assessment of their 

reasoning until after most of the class has figured it out for themselves.  This discussion-

leading technique is effective in this case because students are typically unafraid to 

explain and defend an opinion which is supported by the majority of the class, while at 

the same time there are usually students in the minority who are equally confident 

because they have recognized the error made by their peers.    

One discussion-leading strategy is to first call on a student in the majority to 

explain their reasoning, and then to call on a student from the minority who voted 

correctly.  If the voting is conducted anonymously with clickers, then this strategy would 

require calling on volunteers who have voted for specific answers. Getting students in the 

majority to speak up is rarely a problem, and often a student who voted correctly will 

volunteer to speak up with little prompting.  Then, without evaluating the correct 

explanation, it can be useful to ask the first student to react to the explanation of the 

correct vote.  At this point, the correct answer is usually clear and in this way, students 

learn their error, not from the instructor, but from a peer.  This teaches students the value 

of listening to minority opinions in discussions.  Occasionally, no one will vote correctly, 

or the students from the minority which voted correctly will be unable to articulate their 

reasoning sufficiently to persuade their peers.  In these cases, it can be useful to simply 

announce to the class that the majority is incorrect, and to call for a second round of small 
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group discussion and voting.  In this way the instructor avoids explicitly telling the class 

what the right answer is, and instead encourages them to figure it out for themselves. 

What are the characteristics of these rare questions which consistently provoke a 

majority of students to vote for a particular incorrect option?  All six of these questions 

are well focused, directly dealing with only one key issue.  Many questions 

simultaneously bring up a whole constellation of related issues, while the focus of these 

six questions makes them especially useful in this regard. 

The common errors made in questions 3, 4, and 6 could all be avoided if the 

students worked through the problems in greater depth, evaluating the parameterizations 

at different points in question 3, sketching out the regions of integration in question 4, 

and actually computing the integral and other quantities in question 6.  As a result, these 

particular questions serve to encourage students to actually work things out, rather than 

simply to trust their mathematical intuition.  Perhaps one way of designing a common-

error question is thus to think carefully about what answers might appear plausible if 

students do not perform the actual calculations. 

The success of a question in producing a “time for telling” depends critically on 

when the question is asked, in addition to the content of the question itself.  Question 5 

clearly demonstrates that a particular question can produce very different responses 

depending on whether it is asked early or late in the lesson.  As a result, a key 

characteristic of a successful common-error question may be that it is written in such a 

way that it can be posed early in the lesson, just after an idea has been introduced, when 

the students are more apt to make common errors.  In drawing out these incorrect 
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conceptions, we allow students the opportunity to remake their mental models in a 

memorable way 

Ultimately, it would be almost impossible for anyone to consider our library of 

317 classroom voting questions, and to anticipate that these six would be the ones to most 

effectively provoke common errors.  Therefore, this study suggests that the recording and 

analysis of voting results is a worthwhile project, and that these past results can provide a 

useful guide to instructors who are making lesson plans and deciding which questions to 

use in an upcoming class period.  We thus offer the “teacher’s edition” of our voting 

question collection to any interested instructor who will send us an e-mail request. 

Our experiences with using classroom voting in multivariable calculus have been 

very positive.  We have found this teaching method to be effective at creating an active 

learning environment, where students regularly practice talking with their peers about 

important mathematical issues.  However, the educational success of any particular vote 

rests on the quality of the question used, as well as the classroom context.  When they are 

available, questions which provoke a majority of the class to make a common error and 

vote incorrectly can be remarkably effective teaching tools.  These questions surprise 

students and pique their interest, creating memorable and dramatic teachable moments. 
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Section Instructor Institution Semester  Enrollment  Questions Voted 

1 KC Carroll F06 22 112 

2 MP Carroll F06 20 79 

3 KC Carroll F07 24 153 

4 MP Carroll F07 16 78 

5 KC Carroll F08 23 142 

6 KC Carroll F08 18 126 

7 KC Carroll F09 21 155 

8 MP Carroll F09 22 48 

9 MP Carroll F10 18 33 

10 HZ Carroll F10 24 81 

11 AS Hood F10 21 31 

 

Table 1:  The eleven sections of multivariable calculus from which we gathered data 
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Figure 1:  Here, for each of the 81 questions in the analysis, we plot out the standard 

deviation of the percentage of students voting correctly versus the average percentage of 

students voting correctly.  Numbers indicate the six questions for which a majority of 

students voted for the same incorrect option. 
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The function ���, �� has gradient ∇� at the point �
, ��. The vector ∇� is 

perpendicular to the surface � = ���, �� at the point �
, �, ��
, ���.  

a) True 

b) False 

 

Figure 2, Question 1:    The key idea of this question [10]  is that the gradient of a 

function of two variables is a two dimensional vector, while the surface produced when 

we graph this function resides in three dimensions, thus in general this vector will not be 

perpendicular to the surface, and so the correct answer is (b) False.   

 

 
 

  a) b)  Section 
 21% 79% 2 
 68% 32% 5 

 59% 41% 9 

 76% 24% 10 

 72% 28% 11 

Avg. 59% 41%  

STD 22% 22%  

 
 
Table 2:  Here we present the voting results from Question 1, with the correct answer 

indicated by the bold column. We see that in four of the five sections, a majority voted 

for the same incorrect response, as indicated with italics. 

  



23 
 

A small business has $300,000 worth of equipment and 100 workers. The total 

monthly production, P (in thousands of dollars), is a function of the total value of 

the equipment, V (in thousands of dollars), and the total number of workers, N. 

The differential of P is given by dP = 4.9 dN + 0.5 dV. If the business decides to 

lay off 3 workers and buy additional equipment worth $20,000, then 

a) Monthly production increases. 

b) Monthly production decreases. 

c) Monthly production stays the same. 

 

Figure 3, Question 2:    This classroom voting question [10] calls for an application of 

the differential.  The correct answer is (b), that monthly production decreases, because  

dN = -3 and dV = +20, so that dP = -4.7.   

 
 
 a) b) c)  Section 

 86% 14% 0% 1 

 18% 82% 0% 3 

 61% 35% 4% 5 

 87% 13% 0% 6 

 75% 25% 0% 7 

 57% 38% 5% 8 

 76% 24% 0% 10 

Avg. 66% 33% 1%  

STD 24% 24% 2%  

 

Table 3:  Here we present the voting results from Question 2, with the correct answer 

indicated by the bold column. We see that in six of the seven sections, a majority voted 

for the same incorrect response, as indicated with italics. 
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Which of the following integrals is equal to � � ���, ��	��	��

��

�

	

�
? 

a) � � ���, ��	��	��
	

�

��

�
 

b) � � ���, ��	��	��
	

�/�

��

�
 

c) � � ���, ��	��	��
�/�

	

��

�
 

d) � � ���, ��	��	��
�/�

�

��

�
 

e) � � ���, ��	��	��
��

�

	

�
 

 

Figure 4, Question 3:    Changing the order of integration usually requires an 

understanding of the geometrical region being described by the limits of integration.  

Here [10] this region has � < 4�, and so the correct answer is (b).   

 

 
 
 a) b) c) d) e)  Section 

 0% 14% 0% 86% 0% 3 

 0% 19% 0% 75% 6% 4 

 4% 92% 4% 0% 0% 5 

 0% 0% 0% 100% 0% 6 

 15% 0% 0% 85% 0% 7 

 0% 91% 0% 4% 4% 10 

Avg. 3% 36% 1% 58% 2%  

STD 6% 44% 2% 44% 3%  

 

Table 4:  Here we present the voting results from Question 3, with the correct answer 

indicated by the bold column, and the most popular incorrect response indicated with 

italics. 
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What does the integral � � � �	��	��	��
�

�

�

�

�

�
 represent? 

a) The volume of a cube of side 1 

b) The volume of a sphere of radius 1 

c) The area of a square of side 1 

d) None of the above 

 
Figure 5, Question 4:    When we compute this triple integral [10], we find that it equals 

�

�
, while (a) is equal to 1, (b) is equal to 

�

	
, and (c) is equal to 1, thus (d) is the correct 

answer.   

 
 
 

 a) b) c) d)  Section 
 18% 0% 14% 68% 1 

 68% 0% 9% 23% 3 

 73% 7% 0% 20% 4 

 37% 0% 0% 63% 5 

 33% 0% 33% 33% 6 

 86% 0% 9% 5% 7 

 84% 0% 0% 16% 8 

Avg. 57% 1% 9% 33%  

STD 27% 3% 12% 24%  

 

Table 5:  Here we present the voting results from Question 4, with the correct answer 

indicated by the bold column, and the most popular incorrect response indicated with 

italics. 
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Which of the following is not a parameterization of the entire curve � = �	? 
 

a) ���� = �; ���� = �	 

b) ���� = ��; ���� = �� 

c) ���� = �	; ���� = �� 

d) ���� = 2�; ���� = 8�	 

 
Figure 6, Question 5:    Here [11], the correct answer is (b), because these even powers 

return only positive values, and thus cannot produce the negative portion of the curve.   

 
 
 a) b) c) d)  Section 
 22% 9% 9% 61% 1 

 0% 10% 10% 80% 2 

 0% 14% 8% 86% 3 

 0% 79% 14% 7% 4 

 0% 36% 4% 60% 5 

 0% 27% 0% 73% 6 

 0% 47% 6% 47% 7 

Avg. 3% 32% 7% 59%  

STD 8% 25% 4% 27%  

 

Table 6:  Here we present the voting results from Question 5, with the correct answer 

indicated by the bold column, and the most popular incorrect response indicated with 

italics. 
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All but one of the flux calculations below can be done with just multiplication, but 

one requires an integral. Which one? 

a) !" = 3$% + 2'( through a sphere of radius 4. 

b) !" = $$% + )'( through a sphere of radius 3. 

c) !" = 

̂ + 
�̂ through a disk of radius 2, centered on the z axis, in the z = 2 

plane. 

d) !" = 
�
̂ + �)( through a cylinder of radius 1, between z = 1 and z = 3. 

 
Figure 7, Question 6:    If an integrand is constant, then the integration can be computed 

with ordinary multiplication.  Here, option (c) requires more than ordinary multiplication, 

because the �̂ component of the vector field produces a flux through the disk, and the 

magnitude of this component is given by r, which varies from zero to two within the disk.   

 

 
 a) b) c) d)  Section 
 0% 6% 6% 88% 1 

 0% 30% 9% 53% 3 

 0% 0% 0% 100% 4 

 0% 0% 54% 46% 5 

 0% 7% 93% 0% 6 

 0% 5% 5% 90% 7 

 0% 5% 65% 30% 8 

Avg. 0% 8% 33% 58%  

STD 0% 10% 37% 37%  

 

Table 7:  Here we present the voting results from Question 6, with the correct answer 

indicated by the bold column, and the most popular incorrect response indicated with 

italics. 


