Classroom Voting Questions: Calculus I

4.2 Optimization

1. **True or False:** If \(f(x) \) is continuous on a closed interval, then it is enough to look at the points where \(f'(x) = 0 \) in order to find its global maxima and minima.

 (a) True, and I am very confident
 (b) True, but I am not very confident
 (c) False, but I am not very confident
 (d) False, and I am very confident

2. **True or False:** A function defined on all points of a closed interval always has a global maximum and a global minimum.

 (a) True, and I am very confident
 (b) True, but I am not very confident
 (c) False, but I am not very confident
 (d) False, and I am very confident

3. Let \(f \) be a continuous function on the closed interval \(0 \leq x \leq 1 \). There exists a positive number \(A \) so that the graph of \(f \) can be drawn inside the rectangle \(0 \leq x \leq 1, \quad -A \leq y \leq A \).

 The above statement is:

 (a) Always true.
 (b) Sometimes true.
 (c) Not enough information.

4. Let \(f(x) = x^2 \). **True or False:** \(f \) has an upper bound on the interval \((0, 2) \).

 (a) True, and I am very confident
 (b) True, but I am not very confident
 (c) False, but I am not very confident
 (d) False, and I am very confident
5. Let \(f(x) = x^2 \). **True or False:** \(f \) has a global maximum on the interval \((0, 2)\).

 (a) True, and I am very confident
 (b) True, but I am not very confident
 (c) False, but I am not very confident
 (d) False, and I am very confident

6. Let \(f(x) = x^2 \). **True or False:** \(f \) has a global minimum on the interval \((0, 2)\).

 (a) True, and I am very confident
 (b) True, but I am not very confident
 (c) False, but I am not very confident
 (d) False, and I am very confident

7. Let \(f(x) = x^2 \). **True or False:** \(f \) has a global minimum on any interval \([a, b]\).

 (a) True, and I am very confident
 (b) True, but I am not very confident
 (c) False, but I am not very confident
 (d) False, and I am very confident

8. Consider \(f(x) = -3x^2 + 12x + 7 \) on the interval \(-2 \leq x \leq 4\). Where does this function have its global maximum value?

 (a) \(x = -2 \)
 (b) \(x = 0 \)
 (c) \(x = 2 \)
 (d) \(x = 4 \)

9. Consider \(f(x) = -3x^2 + 12x + 7 \) on the interval \(-2 \leq x \leq 4\). Where does this function have its global minimum value?

 (a) \(x = -2 \)
 (b) \(x = 0 \)
 (c) \(x = 2 \)
 (d) \(x = 4 \)