Classroom Voting Questions: Calculus II

Section 8.2 Applications to Geometry

1. Find the area of the region \(R \) bounded by the graphs of \(f(x) = x^2 \) and \(g(x) = \sqrt{x} \).

 (a) \(\frac{1}{3} \)
 (b) \(\frac{7}{6} \)
 (c) \(-\frac{1}{3} \)
 (d) None of the above

2. True or False The volume of the solid of revolution is the same whether a region is revolved around the \(x \)-axis or the \(y \)-axis.

 (a) True, and I am very confident
 (b) True, but I am not very confident
 (c) False, but I am not very confident
 (d) False, and I am very confident

3. Imagine taking the enclosed region in Figure 8.8 and rotating it about the \(x \)-axis. Which of the following graphs (a)-(d) represents the resulting volume as a function of \(x \)?

 ![Figure 8.8](image-url)
4. Imagine taking the enclosed region in Figure 8.9 and rotating it about the y-axis. Which of the following graphs (a)-(d) represents the resulting volume as a function of x?

![Figure 8.9](image)

5. Imagine that the region between the graphs of f and g in Figure 8.10 is rotated about the x-axis to form a solid. Which of the following represents the volume of this solid?

![Figure 8.10](image)

(a) $\int_{0}^{d} 2\pi x (f(x) - g(x)) \, dx$

(b) $\int_{0}^{d} (f(x) - g(x)) \, dx$

(c) $\int_{0}^{d} \pi (f(x) - g(x))^2 \, dx$

(d) $\int_{0}^{d} (\pi f^2(x) - \pi g^2(x)) \, dx$

(e) $\int_{0}^{d} \pi x (f(x) - g(x)) \, dx$

6. Imagine rotating the enclosed region in Figure 8.11 about three lines separately: the x-axis, the y-axis, and the vertical line at $x = 6$. This produces three different volumes. Which of the following lists those volumes in order from largest to smallest?
7. Let R be the region bounded by the graph of $f(x) = x$, the line $x = 1$, and the x-axis. True or false: The volume of the solid generated when R is revolved about the line $x = 3$ is given by $\int_0^1 2\pi x (3 - x) \, dx$.

(a) True, and I am very confident.
(b) True, but I am not very confident.
(c) False, but I am not very confident.
(d) False, and am very confident.

8. Let R be the region bounded by the graph of $y = x$, the line $y = 1$, and the y-axis. If the shell method is used to determine the volume of the solid generated when R is revolved about the y-axis, what integral is obtained?

(a) $\int_0^1 \pi y^2 \, dy$
(b) $\int_0^1 2\pi x^2 \, dx$
(c) $\int_0^1 2\pi x (1 - x) \, dx$
(d) None of the above
9. The figure below shows the graph of \(y = (x + 1)^2 \) rotated around the \(x \)-axis.

The volume of the approximating slice that is \(x_i \) units away from the origin is

(a) \(\pi \frac{81x_i^2}{4} \Delta x \)
(b) \(\pi x_i^2 \Delta x \)
(c) \(\pi (x_i + 1)^2 \Delta x \)
(d) \(\pi (x_i + 1)^4 \Delta x \)

10. An integral that would calculate the volume of the solid obtained by revolving the graph of \(y = (x + 1)^2 \) from \(x = 1 \) to \(x = 2 \) around the \(y \)-axis is:

(a) \(\int_1^2 \pi (\sqrt{y} - 1)^2 \, dx \)
(b) \(\int_0^9 \pi (x + 1)^4 \, dx \)
(c) \(\int_1^2 \pi (\sqrt{y} - 1)^2 \, dy \)
(d) \(\int_0^9 \pi (\sqrt{y} - 1)^2 \, dx \)

11. The length of the graph of \(y = \sin(x^2) \) from \(x = 0 \) to \(x = 2\pi \) is calculated by

(a) \(\int_0^{2\pi} (1 + \sin(x^2)) \, dx \)
(b) \(\int_0^{2\pi} \sqrt{1 + \sin(x^2)} \, dx \)
(c) \(\int_0^{2\pi} \sqrt{1 + (2x\sin(x^2))^2} \, dx \)
(d) \(\int_0^{2\pi} \sqrt{1 + (2x\cos(x^2))^2} \, dx \)