\(\newcommand{\bx}{\textbf{x}} \newcommand{\bo}{\textbf{0}} \newcommand{\bv}{\textbf{v}} \newcommand{\bu}{\textbf{u}} \newcommand{\bq}{\textbf{q}} \newcommand{\by}{\textbf{y}} \newcommand{\bb}{\textbf{b}} \newcommand{\ba}{\textbf{a}} \newcommand{\grad}{\boldsymbol{\nabla}} \newcommand{\pd}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\pdd}[2]{\frac{\partial^2 #1}{\partial #2^2}} \newcommand{\pddm}[3]{\frac{\partial^2 #1}{\partial #2 \partial #3}} \newcommand{\deriv}[2]{\frac{d #1}{d #2}} \newcommand{\lt}{ < } \newcommand{\gt}{ > } \newcommand{\amp}{ & } \)

Section3.2Taylor's Theorem

Let's start by recalling the definition of a Taylor Series. Loosely speaking, if \(f\) is infinitely smooth (has infinitely many derivatives) then \begin{equation*} f(x) = \sum_{k=0}^\infty \frac{f^{(k)}(a)}{k!}(x-a)^k \end{equation*} in some neighborhood of \(x=a\). The power here is that Taylor Series allow for the approximation of smooth functions as polynomials.